2023
Turunen, J & Lipping, T 2023, ’Feasibility of neural network metamodels for emulation and sensitivity analysis of radionuclide transport models’, Scientific Reports, vol. 2023, no. 13, 6985, pp. 1-11. https://doi.org/10.1038/s41598-023-34089-9
2022
Pohjola J, Turunen J, Lipping T, Ikonen A. 2022. On the inclusion of forest exposure pathways into a stylized lake-farm scenario in a geological repository safety analysis. Journal of Environmental Radioactivity, Vol 255, 10719, https://doi.org/10.1016/j.jenvrad.2022.107019
Narra N, Linna P, Lipping T. 2022. ”Calculating Productivity Zones of Crop Fields using Open Satellite Data,” IGARSS 2022 – 2022 IEEE International Geoscience and Remote Sensing Symposium, 2022, pp. 6073-6076, doi: 10.1109/IGARSS46834.2022.9883146.
Nevavuori, P, Narra, N, Linna, P & Lipping, T 2022. ’Assessment of Crop Yield Prediction Capabilities of CNN Using Multisource Data’. In T Lipping, P Linna & N Narra (eds), New Developments and Environmental Applications of Drones: Proceedings of FinDrones 2020. Springer, Cham, pp. 173-186.
Halla, A, Narra, N, Lipping, T & Linna, P (ed.) 2022. ’Role of Drones in Characterizing Soil Water Content in Open Field Cultivation’. In T Lipping, P Linna & N Narra (eds), New Developments and Environmental Applications of Drones: Proceedings of FinDrones 2020. Springer, Cham, pp. 121-137.
Oksa, P, Salminen, T & Lipping, T 2022. Obtaining a ROS-Based Face Recognition and Object Detection: Hardware and Software Issues. In X-S Yang, S Sherratt, N Dey & A Joshi (eds), Lecture Notes in Networks and Systems, vol. 235, Springer Science and Business Media Deutschland GmbH, pp. 949-962, 6th International Congress on Information and Communication Technology, ICICT 2021, https://doi.org/10.1007/978-981-16-2377-6_86
Narra, N, Halla, A, Linna, P & Lipping, T 2022. A Minimalist Approach to Yield Mapping of Standing Wheat Crop with Unmanned Aerial Vehicles. In T Lipping, P Linna & N Narra (eds), New Developments and Environmental Applications of Drones: Proceedings of FinDrones 2020. Springer, Cham, pp. 157-171. https://doi.org/10.1007/978-3-030-77860-6_9
2021
Iitti M, Grönman J, Turunen J, Lipping T., 2021. Classification of Masonry Bricks using Convolutional Neural Networks: a Case Study in a University-Industry Collaboration Project. In Proceedings of the 2021 IEEE International Conference on Progress in Informatics and Computing, December 17-19, 2021, Online. p. 125-129. 24-078
Ahonen V, Leino M, Lipping T., 2021. Electroencephalography in Evaluating Mental Workload of Gaming. In Proc 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), p. 845-848. https://doi.org/10.1109/EMBC46164.2021.9629772
Saari, M., Soini, J., Grönman, J., Rantanen, P., Mäkinen, T. & Sillberg, P., 2021. Modeling the Software Prototyping Process in a Research Context. Information Modelling and Knowledge Bases XXXII: Kiel Computer Science Series (KCSS) 2020/1. Tropmann-Frick, M., Thalheim, B., Jaakkola, H., Kiyoki, Y. & Yoshida, N. (eds.). IOS Press BV, Vol. 333. p. 107-118 12 p. 2009
Kamata, K, Lipping, T, Yli-Hankala, A, Jäntti, V & Yamauchi, M 2021. ’Spurious electroencephalographic activity due to pulsation artifact in the depth of anesthesia monitor’, JA Clinical Reports, vol. 7, 35. https://doi.org/10.1186/s40981-021-00441-z
2020
Narra Girish, N., Nevavuori, P, Linna, P & Lipping, T. 2020. A Data Driven Approach to Decision Support in Farming. Information Modelling and Knowledge Bases XXXI. p. 175-185 11 p. (Frontiers in artificial intelligence and applications; vol. 321).
Nevavuori, P, Lipping, T, Narra Girish, N & Linna, P. 2020. Assessment of Cloud Cover in Sentinel-2 Data Using Random Forest Classifier. 2020 IEEE International Geoscience and Remote Sensing Symposium (IGARSS). IEEE, p. 4661-4664
Nevavuori, P, Narra, N, Linna, P & Lipping, T. 2020. Crop Yield Prediction Using Multitemporal UAV Data and Spatio-Temporal Deep Learning Models. Remote Sensing, vol. 12, no. 23, 4000
Pohjola, J, Turunen, J & Lipping, T. 2020. Lake and mire isolation data set for the estimation of post-glacial land uplift in Fennoscandia. Earth System Science Data, vol. 12, no. 2, p. 869-873
Niemi, J & Tanttu, JT. 2020. Deep learning–based automatic bird identification system for offshore wind farms. Wind Energy, vol. 23, no. 6, p. 1394-1407
Niemi, J & Tanttu, J. 2020. Deep Learning Case Study on Imbalanced Training Data for Automatic Bird Identification. In: Deep Learning: Algorithms and Applications. Pedrycz, W. & Chen, S-M. (eds.). 1 ed. Switzerland: Springer, 32 p. (Studies in Computational Intelligence; vol. 865).
Grönman, J, Viljanen, J, Vihervaara, J & Saari, M. 2020. An Open-Source Solution for Mobile Robot based Environmental Sensing. In: 2020 43nd International Convention on Information and Communication Technology, Electronics and Microelectronics, MIPRO 2020: Computers in technical systems. IEEE, p. 1191-1195
Linna, P, Aaltonen, T, Halla, A, Grönman, J & Narra Girish, N. 2020. Conceptual design of an autonomous rover with ground penetrating radar: Application in characterizing soils using deep learning. In: 2020 43nd International Convention on Information and Communication Technology, Electronics and Microelectronics, MIPRO 2020: Computers in technical systems. IEEE, p. 1174-1179
Aaltonen, T, Saarivirta, M, Kerminen, T & Grönman, J. 2020. Implementation of a low-cost autonomous underwater vehicle using open source ROS components with consumer class sonar technologies. In: 2020 43nd International Convention on Information and Communication Technology, Electronics and Microelectronics, MIPRO 2020: Computers in technical systems. IEEE, p. 1189-1194
2019
Linna, P, Narra, N & Grönman, J. 2019. Intelligent data service for farmers. In: 42nd International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO), Opatija, Croatia, 2019, pp. 1072-1075. doi: 10.23919/MIPRO.2019.8756688
Sojakka, T, Weckman, K, Lipping, T, Haavisto, F & Rinne, A 2019, Working report 2018-45: Results of Monitoring at Olkiluoto in 2017 – Environment. Posiva
Narra Girish, N, Nevavuori, P, Linna, P & Lipping, T 2019, A Data Driven Approach to Decision Support in Farming. In Proc. INTERNATIONAL CONFERENCE ON INFORMATION MODELLING AND KNOWLEDGE BASES.
Mikola, A, Särkelä, M, Walsh, T & Lipping, T 2019, Power Spectrum and Cross Power Spectral Density Based EEG Correlates of Intensive Care Delirium. In Proc. 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE, pp. 4562
Nevavuori, P, Narra Girish, N & Lipping, T 2019, Crop yield prediction with deep convolutional neural networks. Computers and Electronics in Agriculture, vol. 163, no. 104859. https://doi.org/10.1016/j.compag.2019.104859
Heimbürger, A, Keto, H, Turunen, J, 2019, Using Recorded Audio Feedback in Multi-Cultural Higher e-Education: How do Academics Experience? A Thematic Network Analysis. In Proc. EJC2019.
Widbom, T & Lipping, T 2019, Optimizing Locations of Social and Health Care Service Centers Using Location-Allocation Tools. In Information Modelling and Knowledge Bases XXX. IOP Press. DOI: 10.3233/978-1-61499-933-1-530
Zabihi, M, Kiranyaz, S, Jäntti, VHK, Lipping, T & Gabbouj, M 2019, Patient-Specific Seizure Detection Using Nonlinear Dynamics and Nullclines. IEEE Journal of Biomedical and Health Informatics, https://doi.org/10.1109/JBHI.2019.2906400
Pohjola, J, Turunen, J, Lipping, T & Ikonen, A 2019, Probabilistic assessment of the impact of bottom sediment on doses to humans from a groundwater-mediated radionuclide release in a farm-lake scenario. JOURNAL OF RADIOLOGICAL PROTECTION, vol. 39, pp. 564–578.
Oksa, P & Lipping, T 2019, Reliability of ROS Networked Mobile Robots. International Journal of Open Source Software and Processes, vol. 10, no. 1. https://doi.org/10.4018/IJOSSP.2019010103
2018
Vihervaara, J, Alapaholuoma, T, Lipping, T & Loula, P 2018, Congestion Control Supported Dual-Mode Video Transfer. in Knowledge Discovery, Knowledge Engineering and Knowledge Management: 8th International Joint Conference, IC3K 2016, Porto, Portugal, November 9–11, 2016, Revised Selected Papers. Communications in Computer and Information Science, vol. 914, Springer, pp. 326-345. DOI: 10.1007/978-3-319-99701-8_16
Turunen, J, Pohjola, J & Lipping, T 2018, Sensitivity analysis of radionuclide transport in biosphere. in S Salomaa, M Lusa & K Vaaramaa (eds), Cores Symposium on Radiation in the Environment: Scientific Achievements and Challenges for the Society. vol. A261, Säteilyturvakeskus.
Lipping, T, Erkintalo, N, Särkelä, M, Takala, RSK, Katila, A, Frantzén, J, Posti, JP, Müller, M & Tenovuo, O 2018, Connectivity analysis of full montage EEG in traumatic brain injury patients in the ICU. in EMBEC and NBC 2017 – Joint Conference of the European Medical and Biological Engineering Conference EMBEC 2017 and the Nordic-Baltic Conference on Biomedical Engineering and Medical Physics, NBC 2017. IFMBE Proceedings, vol. 65, Springer Verlag, pp. 97-100. DOI: 10.1007/978-981-10-5122-7_25
Olejarczyk, E, Lipping, T & Marciniak, R 2018, Correlation of depth of anesthesia indexes with MAC in volatile anesthesia. in EMBEC and NBC 2017 – Joint Conference of the European Medical and Biological Engineering Conference EMBEC 2017 and the Nordic-Baltic Conference on Biomedical Engineering and Medical Physics, NBC 2017. IFMBE Proceedings, vol. 65, Springer Verlag, pp. 972-975. DOI: 10.1007/978-981-10-5122-7_243
Lipping, T, Kumpumäki, T & Linna, P 2018, Crop Lodging Analysis From Uas Orthophoto Mosaic, Sentinel-2 Image and Crop Yield Monitor Data. in 2018 IEEE International Geoscience and Remote Sensing Symposium (IGARSS). IEEE, pp. 7727-7730.
Pohjola, J, Turunen, J, Lipping, T, Sivula, A & Marila, M 2018, Historical Perspectives to Postglacial Uplift: Case Studies from the Lower Satakunta Region. SpringerBriefs in Geography, Springer Verlag.
Kumpumäki, T, Tuominen, J & Lipping, T 2018, Remote sensing data analysis of the materials collected between 2007 and 2016. POSIVA OY.
Lipping, T 2018, Data analytics for decision support in healthcare. In A Sirkka (ed.), From Big Data to Myhealth – Data Analytics as a Tool for Human-Driven Well-Being. Sitra Studies, SITRA, pp. 20-25