Table of Contents

Foreword	iii
Organising and Scientific Committees	iv
Session Chairs	v
Symposium Partners	vi
Table of Contents	vii
List of Authors	xix
Volume 1	
Keynote session 1 Forty years of building physics research – for what benefit? <i>Samuelson, I.</i>	3
Keynote session 2 Low energy buildings – the basis for realizing the strategy for independency of fossil fuels in 2050 <i>Svendsen, S.</i>	15
Keynote session 3 Building inspections in Finland – fighting against moulds <i>Pirinen, J.</i>	31
Session A1 - Air-tightness of buildings	
Dwelling air-tightness in a 55 years old estate Hens, H.	47
Usability of data from commissioned tests for estimating trends and distribution of air tightness in the building stock <i>Holøs, S.B.; Relander, TO. and Heimdal, S.I.</i>	55
Important factors to achieve an airtight building <i>Wahlgren, P.</i>	63
Measurements and modelling of airflows in houses using passive sampling and HAM software <i>Essah, E.A.</i>	71
Air tightness of structural elements and internal air leakages in a multi-apartment building <i>Aaltonen, A.; Lähdesmäki, K. and Vinha, J.</i>	79
Session A2 - Regulations and air-tightness of constructions	
Air leakages through cross laminated timber (CLT) constructions	89

Skogstad, H.B.; Gullbrekken, L. and Nore, K.

Recent Changes in the Building Envelope Air Leakage Regulations and Practices in the US <i>Spinu, M. and Erickson, B.</i>	97
How to ensure low radon concentrations in indoor environments <i>Wraber, I. and Rasmussen, T.V.</i>	105
Energy implications of different infiltration models <i>Haase, M.</i>	113
Experimental testing of rain tightness of wind barrier and sealing of window joints <i>Skogstad, H.B.; Uvsløkk, S. and Asphaug, O.</i>	121
Session A3 - Validation of calculation methods and results	
Validation of a coupled CFD-HAM model with a climate chamber experiment on a small wall sample	131
Van Belleghem, M.; Steeman, M.; Janssens, A. and De Paepe, M.	120
Experimental validation of two simplified thermal zone models Kopecký, P.	139
Comparison of measured and calculated temperature and relative humidity with varied and constant air flow in the façade air gap <i>Hägerstedt, O. and Harderup, LE.</i>	147
Comparison of calculated and measured values of wall assembly tests using Delphin 5 <i>Laukkarinen, A. and Vinha, J.</i>	155
Importance of moisture transport, snow cover and soil freezing to ground temperature predictions <i>Xu, H. and Spitler, J.D.</i>	163
Session A4 - Roof and floor simulations	
Cool roofing in cold climates: A contradiction or a potential for energy savings? <i>Murphy, M.; Grynning, S.; Jelle, B.P.; Gustavsen, A. and Haase, M.</i>	173
Proposal for a modified Glaser-Method for the risk assessment of flat timber roofs <i>Nusser, B.; Bednar, T. and Teibinger, M.</i>	181
Vapour control design of wooden structures including moisture sources due to air exfiltration	189
Künzel, H.M.; Zirkelbach, D. and Schafaczek, B.	
Frost insulation of the Finnish slab on ground foundation <i>Airaksinen, M. and Heikkinen, J.</i>	197
Probabilistic analysis of hygrothermal conditions and mould growth potential in cold attics <i>Hagentoft, CE. and Sasic Kalagasidis, A.</i>	205

Session A5 - Roof solutions in lab and field experiments

Experimental and numerical investigations to compare the thermal performance of IR reflecting insulation and mineral wool <i>Kersken, M. and Schade, A.</i>	215
A new method for drying out low pitched cold deck roofs <i>Kloch, N.P.</i>	223
Frost Damage of Roof Tiles in Relatively Warm Area in Japan: - Water Absorption and Freezing-Thawing Experiments - <i>Iba, C. and Hokoi, S.</i>	231
Application of risk assessment technique to attics <i>Kurkinen, K. and Hagentoft, CE.</i>	239
Study of the thermal performances of an integrated photovoltaic-thermal hybrid air collector coupled with a ventilation device <i>Assoa, Y.B.; Flechon, O.; Boillot, B. and Sauzedde, F.</i>	247
Technical analysis of moisture transfer qualities of mildly sloping roofs <i>Kettunen, AV.</i>	255
Session A6 - ETICS and new wall solutions	
Hygrothermal behaviour of ETICS - Numerical and experimental study <i>Barreira</i> , <i>E. and de Freitas</i> , <i>V.P.</i>	265
Vacuum Insulated Glass Sandwiches: Assembly, characteristics and application of the new high insulating facade panel <i>Willems, W. and Skottke, T.</i>	273
Development of a moisture safe connection for stud walls Jönsson, J. and Molnár, M.	281
An Innovative Approach to Retrofitting Multi-Unit Residential Buildings Using a Nested Thermal Envelope $Design^{TM}$ <i>Touchie, M.; Pressnail, K.; Richman, R. and Dixon, E.</i>	289
Heated External Insulation Composite Systems to avoid Biological Defacement von Werder, J.; Kogan, D.; Sack, M.; Venzmer, H. and Malorny, W.	297
Renovation of a detached single-family house into an energy efficient low energy house <i>Larsen, T.S.; Maagaard, S. and Jensen, R.L.</i>	305
Session A7 - Walls in field measurements	
Infrared measurements on a ventilated cladding for assessing its surface temperature and heat transfers calculation through the insulated part of the envelope using a simulation tool <i>Labat, M.; Garnier, G.; Woloszyn, M. and Roux, J.J.</i>	315
Rehabilitation of basement walls with moisture problems by the use of vapour open exterior thermal insulation $Gamma = S + Kyabik M$ and Martinean F	323

Geving, S.; Kvalvik, M. and Martinsen, E.

Long-term measurement and hygrothermal simulation of an interior insulation consisting of	
reed panels and clay plaster Wegerer, P. and Bednar, T.	331
Moisture and mould in prefabricated timber frame constructions during production until enclosure of the house <i>Olsson, L.; Mjörnell, K. and Johansson, P.</i>	339
Session A8 - Wall simulations	
Assessment of the Risk for Mold Growth in a Wall Retrofitted with Vacuum Insulation Panels <i>Johansson, P.</i>	349
Is ventilation of timber façades essential? Kehl, D.; Hauswirth, S. and Weber, H.	357
A numerical study of the hygrothermal performance of capillary active interior insulation systems <i>Vereecken, E. and Roels, S.</i>	365
Walls with Rising Damp Problems: Prediction Water Capillary Rise <i>Guimarães, A.S.; Delgado, J.Q. and de Freitas, V.P.</i>	373
Considerations to the hygrothermal behavior of exterior walls in timber frame construction with direct rendering <i>Rosenau, B.</i>	381
Session A9 - Walls in lab tests	
Rising Damp in Historic Buildings: The Wall Base Ventilation System <i>Guimarães, A.S.; Delgado, J.Q. and de Freitas, V.P.</i>	391
Guimaraes, A.S., Delgado, J.Q. ana de Frenas, V.I.	
Hygrothermal response of highly insulated timber frame walls with an exterior air barrier system: laboratory investigation <i>Langmans, J.; Klein, R. and Roels, S.</i>	399
Hygrothermal response of highly insulated timber frame walls with an exterior air barrier system: laboratory investigation	399 407
Hygrothermal response of highly insulated timber frame walls with an exterior air barrier system: laboratory investigation <i>Langmans, J.; Klein, R. and Roels, S.</i> Tensile cracking of ventilated rendered rain-screen cladding systems	
 Hygrothermal response of highly insulated timber frame walls with an exterior air barrier system: laboratory investigation <i>Langmans, J.; Klein, R. and Roels, S.</i> Tensile cracking of ventilated rendered rain-screen cladding systems <i>Molnár, M.; Capener, CM.; Jönsson, J. and Sandin, K.</i> An experimental method for assessing heat and moisture response of a massive timber wall exposed to summer climatic conditions 	407
 Hygrothermal response of highly insulated timber frame walls with an exterior air barrier system: laboratory investigation <i>Langmans, J.; Klein, R. and Roels, S.</i> Tensile cracking of ventilated rendered rain-screen cladding systems <i>Molnár, M.; Capener, CM.; Jönsson, J. and Sandin, K.</i> An experimental method for assessing heat and moisture response of a massive timber wall exposed to summer climatic conditions <i>Rafidiarison, H.; Mougel, E. and Nicolas, A.</i> Water penetration through clay brick veneer wall 	407 415
 Hygrothermal response of highly insulated timber frame walls with an exterior air barrier system: laboratory investigation <i>Langmans, J.; Klein, R. and Roels, S.</i> Tensile cracking of ventilated rendered rain-screen cladding systems <i>Molnár, M.; Capener, CM.; Jönsson, J. and Sandin, K.</i> An experimental method for assessing heat and moisture response of a massive timber wall exposed to summer climatic conditions <i>Rafidiarison, H.; Mougel, E. and Nicolas, A.</i> Water penetration through clay brick veneer wall <i>Straka, V.</i> 	407 415
 Hygrothermal response of highly insulated timber frame walls with an exterior air barrier system: laboratory investigation <i>Langmans, J.; Klein, R. and Roels, S.</i> Tensile cracking of ventilated rendered rain-screen cladding systems <i>Molnár, M.; Capener, CM.; Jönsson, J. and Sandin, K.</i> An experimental method for assessing heat and moisture response of a massive timber wall exposed to summer climatic conditions <i>Rafidiarison, H.; Mougel, E. and Nicolas, A.</i> Water penetration through clay brick veneer wall <i>Straka, V.</i> Session A10 - Simulation methods and snow-on-roof models Snow melting and freezing on older townhouses 	407 415 423

Application of ADI Splitting Methods to Two-Dimensional Building Envelope System Solvers <i>Paepcke, A.; Nicolai, A. and Grunewald, J.</i>	449
An Extensible Calculation Framework for Climate Data and Boundary Conditions <i>Vogelsang, S. and Nicolai, A.</i>	457
Performance Assessment of Interior Insulations by a Stochastic Method <i>Zhao, J.; Plagge, R. and Grunewald, J.</i>	465
Session A11 - Night-time cooling and moisture buffering experiments	
Humidity buffering of building interiors by absorbent materials <i>Padfield, T. and Jensen, L.A.</i>	475
Initial development of a combined PCM and TABS solution for heat storage and cooling <i>Pomianowski, M.; Heiselberg, P. and Jensen, R.L.</i>	483
Experimental investigation of the influence of different flooring emissivity on night-time cooling using displacement ventilation Le Dréau, J.; Karlsen, L.; Litewnicki, M.; Michaelsen, L.; Møllerskov, A.; Ødegaard, H.; Svendsen L.; Jensen, R.L. and Marszal, A.	491
Experimental investigation of the influence of obstacle in the room on passive night-time cooling using displacement ventilation <i>Pomianowski, M.; Khalegi, F.; Domarkas, G.; Taminskas, J.; Bandurski, K.; Madsen, K.; Gedsø, S. and Jensen, R.L.</i>	499
Experimental investigation of the heat transfer in a room using night-time cooling by mixing ventilation <i>Jensen, R.L.; Nørgaard, J.; Daniels, O.; Justesen, R.O.; Madsen, M.S.; Mikkelsen, K.B. and Topp, C.</i>	507

Volume 2

Session B1 - Computational fluid dynamics simulations

Simulation and Experimental Validation of Chaotic Behavior of Airflow in a Ventilated Room <i>van Schijndel, J.</i>	517
Numerical Simulation of Building Components – Towards an Efficient Implementation of Air Convection in HAM-models Langmans, J.; Nicolai, A.; Klein, R.; Grunewald, J. and Roels, S.	525
Influence of ambient air speed on convective heat transfer coefficient at natural convection regime <i>Mihalka, P.; Drzik, M. and Matiašovský, P.</i>	533
Numerical modeling of wind-induced cavity ventilation for a low-rise building <i>Nore, K.; Blocken, B. and Thue, J.V.</i>	541
Influence of wind direction and urban surroundings on natural ventilation of a large football stadium <i>van Hooff, T. and Blocken, B.</i>	549

Session B2 - HAM transport in porous material

Towards a Semi-Generic Simulation Framework for Mass and Energy Transport in Porous Materials <i>Nicolai, A. and Grunewald, J.</i>	559
Hygrothermal behaviour of a hemp concrete wall: influence of sorption isotherm modelling <i>Aït Ouméziane, Y.; Bart, M.; Moissette, S.; Lanos, C.; Prétot, S. and Collet, F.</i>	567
Sensitivity analysis of total pressure gradient on wood drying <i>Abahri, K.; Belarbi, R.; Tahlaiti, M. and Remki, B.</i>	575
Session B3 - Material properties and determination methods	
Determination of Hygrothermal Properties for Building Materials using Inverse Modeling Techniques van Schijndel, J.; Uittenbosch, S. and Thomassen, T.	585
Properties, Requirements and Possibilities for Traditional, State-of-the-Art and Future Thermal Building Insulation Materials and Solutions <i>Jelle, B.P.; Gustavsen, A.; Time, B.; Skogstad, H.B. and Dalehaug, A.</i>	593
The Effect of Leakage Through the Sealant in the Cup Test Method <i>Manelius, E. and Vinha, J.</i>	601
Correlation between thermal conductivity and elasticity modulus of porous building materials - power law functions of porosity <i>Matiašovský</i> , <i>P. and Bagel</i> , <i>L</i> .	609
Hygrothermal Properties of Biobased Polyurethane Foam Insulation for Building Envelope Construction Mukhopadhyaya, P.; Ngo, TD.; Ton-That, MT.; Masson, JF. and Sherrer, G.	613
Session B4 - Hysteresis effect	
Inverse analysis of the bound water diffusion coefficient in small samples of wood from sorption tests <i>Rémond, R.; Almeida, G. and Perré, P.</i>	623
Sorption behavior of various lignocellulosic building materials <i>Almeida, G.; Rémond, R. and Perré, P.</i>	631
Critical moisture contents – during water absorption and drying <i>Matiašovský, P. and Bagel, L.</i>	639
Hysteresis and Temperature Dependency of Moisture Sorption –New Measurements <i>Rode, C. and Hansen, K.K.</i>	647

Water vapour sorption of building materials – modelling of scanning curves655Koronthalyova, O.655

Session B5 - Water vapour transport

Inverse analysis of water vapour transport in building materials using genetic algorithm <i>Kočí, J.; Maděra, J.; Žumár, J.; Pavlik, Z. and Černý, R.</i>	665
Vapour permeability and water absorption of different exterior paint systems <i>Miniotaite, R.</i>	673
Analysis of the cell wall distribution in a growth ring on the water vapour transport in Spruce wood <i>Zillig, W.; Derome, D. and Carmeliet, J.</i>	681
A transient method for determination of water vapour diffusion coefficient of building materials as function of relative humidity <i>Pavlík, Z.; Žumár, J.; Pavlíková, M.; Jerman, M. and Černý, R.</i>	689
Thermal diffusion of water vapour in porous materials: true or false? <i>Janssen, H.</i>	697

Session B6 - Material damages and durability

Effect of variable hygro-thermal conditions on chemical degradation of concrete structures due to alkali-silica reaction <i>Gawin, D.; Pesavento, F.; Grymin, W. and Wyrzykowski, M.</i>	707
Setpoint control for air heating in a church to minimize moisture related mechanical stress in wooden interior parts <i>Schellen, H. and van Schijndel, J.</i>	715
Non-uniform moisture influence on multi-layer plywood cylindrical shell <i>Šliseris, J. and Rocēns, K.</i>	723
Influence of moisture sorption on deformations of building materials <i>Miniotaite, R.</i>	731
Characterization of damage-induced evolution of building materials hygric properties <i>Rouchier, S.; Woloszyn, M.; Foray, G. and Roux, JJ.</i>	739
Session B7 - Moisture problems and design solutions	
Session B7 - Moisture problems and design solutions Methods for investigation of technical status before renovation and evaluation of renovation measures for the building envelope <i>Mjörnell, K.; Gustafsson, T. and Sasic Kalagasidis, A.</i>	749
Methods for investigation of technical status before renovation and evaluation of renovation measures for the building envelope	749 757
 Methods for investigation of technical status before renovation and evaluation of renovation measures for the building envelope <i>Mjörnell, K.; Gustafsson, T. and Sasic Kalagasidis, A.</i> Interior Mould Growth Risk Reduction - Application of Nonlinear Programming for Envelope Optimisation 	

Session B8 - Moisture problems and technical solutions	
Humidity Control in Historic Buildings through Adaptive Ventilation - A Case Study <i>Broström, T.; Hagentoft, CE. and Wessberg, M.</i>	783
Evaluation of the climate for conservation of the adoration of the mystic lamb in the St.	701
Bavo Cathedral in Ghent De Backer, L.; Van Belleghem, M.; Steeman, M.; Janssens, A. and De Paepe, M.	791
Control strategies for demand controlled ventilation in dwellings <i>Nielsen, T.R. and Drivsholm, C.</i>	799
The hygro thermal performance in Hellerup Church, Denmark <i>Larsen, P.K.</i>	807
Session B9 - Effects of climate change simulations	
Modeling multiple indoor climates in historic buildings due to the effect of climate change <i>van Schijndel, J.; Schellen, H. and Martens, M.</i>	817
Effect of hot weather periods in moderate climate regions on approach to slab thermal design in residential buildings	825
Staszczuk, A.; Kuczyński, T. and Radoń, J.	
Computational modelling of the impact of climate change on the indoor environment of a historic building in the Netherlands <i>Huijbregts, Z.; Kramer, R.; van Schijndel, J. and Schellen, H.</i>	833
Mould Growth inside an Attic concerning Four Different Future Climate Scenarios <i>Nik, V.</i>	841
An approach to assess future climate change effects on indoor climate of a historic stone	9.40
church Antretter, F.; Schöpfer, T. and Kilian, R.	849
Session B10 - Mould growth models	
Mould growth on building materials in laboratory and field experiments Lähdesmäki, K.; Salminen, K.; Vinha, J.; Viitanen, H.; Ojanen, T. and Peuhkuri, R.	859
Classification of material sensitivity - New approach for mould growth modelling <i>Ojanen, T.; Peuhkuri, R.; Viitanen, H.; Lähdesmäki, K.; Vinha, J. and Salminen, K.</i>	867
Modelling reliability of structure with respect to incipient mould growth <i>Pietrzyk, K.; Samuelson, I. and Johansson, P.</i>	875
m-model: a method to assess the risk for mould growth in wood structures with fluctuating hygrothermal conditions <i>Togerö, Å.; Svensson-Tengberg, C. and Bengtsson, B.</i>	883
Mould Growth in Attics and Crawlspaces Johansson, P.; Bok, G. and Ekstrand-Tobin, A.	891

Session B11 - Durability of structures

Influence of Climate Change to Concrete Buildings - Preliminary study <i>Lahdensivu, J.; Tietäväinen, H. and Pirinen, P.</i>	901
Building Envelope Commissioning for Extreme Climates De Sola, D.; Knight, K. and Boyle, B.	909
Deterioration of building envelope of wooden apartment buildings built before 1940 based on external survey <i>Klõšeiko, P.; Agasild, T. and Kalamees, T.</i>	917
Modelling of service life and durability of wooden structures Viitanen, H.; Toratti, T.; Makkonen, L.; Thelandersson, S.; Isaksson, T.; Früwald, E.; Jermer, J.; Englund, F. and Suttie, E.	925
Designing Single-ply Membrane "Cool Roof" Systems for Service and Durability <i>Hutchinson, T.</i>	933

Volume 3

Session C1 - Thermal bridge calculations

Evaluation of the thermal bridges of prefabricated concrete large-panel and brick apartment buildings in Estonia <i>Ilomets, S.; Kalamees, T. and Paap, L.</i>	943
A Parametric study of the thermal performance of embedded Vacuum Insulation Panels <i>Gudmundsson, K.</i>	951
New Developments in Mitigation of Thermal Bridges Generated by Light Gage Steel Framing Components Engelmann, P.; Urban, B. and Kosny, J.	959
Arranging Insulation for Better Thermal Resistance in Concrete and Masonry Wall Systems Urban, B.; Engelmann, P.; Kossecka, E. and Kosny, J.	967
Session C2 - Thermal bridge standards and calculations	
The importance of a common method and correct calculation of thermal bridges <i>Berggren, B. and Wall, M.</i>	977
Current calculation rules for thermal bridges and resulting problems for the practical use <i>Schild, K.; Willems, W. and Hellinger, G.</i>	985
Practical implementation of a harmonic conductance model in thermal simulation software <i>Kornicki</i> , <i>T</i> .	993
Sensitivity analyses of thermal bridges: confrontation with the new Belgian EPB- methodology <i>Delghust, M.; Huyghe, W. and Janssens, A.</i>	1001
A pragmatic approach to incorporate the effect of thermal bridging within the EPBD-regulation <i>Roels, S.; Deurinck, M.; Delghust, M.; Janssens, A. and van Orshoven, D.</i>	1009

Session C3 - Energy standards and life-cycle analysis	
Sustainability of Polyurethane Thermal Insulation Käkelä, P. and Jormalainen, J.	1019
Life Cycle Analysis as an Effective Instrument to find sustainable solutions and identify Energy- as well as Cost Saving Potentials <i>Vogdt, F.U. and Dittmar, A.</i>	1027
Zero Emission Building Envelopes - Comparison of Different Wall Constructions in a Life Cycle Perspective <i>Haavi, T. and Gustavsen, A.</i>	1035
Method for use of economical optimization in design of nearly zero energy buildings <i>Hansen, S. and Svendsen, S.</i>	1043
Low-energy buildings in Europe - Building envelope performance and energy standards <i>Thullner, K.; Johansson, D. and Janson, U.</i>	1051
Session C4 - Thermal comfort	
Potential influence of the heating demand by choice of thermal mass and comfort interval <i>Ståhl, F.</i>	1061
Effect of Energy Renovation on Thermal Sensation and Comfort during Heating Season <i>Holopainen, R. and Tuomaala, P.</i>	1069
Field study of the thermal environment created by a radiant heating system in a detached house for sleep thermal comfort <i>Leung, C. and Ge, H.</i>	1077
Evaluating Occupant Comfort in Social Housing Following Building Envelope Upgrades <i>Topping, K. and Parker, P.</i>	1085
Session C5 - Indoor climate	
The influence of external wall thermal mass on indoor air parameters stability <i>Borodinecs, A.; Gaujena, B.; Varavs, V. and Kreslins, A.</i>	1095
Indoor Climate and Humidity Loads in Old Rural Houses with Different Usage Profiles <i>Alev, Ü.; Kalamees, T. and Arumägi, E.</i>	1103
Sustainable Retrofitting Strategies for Museum Buildings - Development and Assessment of Retrofitting Strategies	1111
Steinbach, S.; Hoppe, M.; Huckemann, V.; Schank, A.; Klemm, L. and Werdin, H. User behavior regarding natural ventilation - state of the art and research needs	1119
Mayer, C. and Antretter, F.	1107
Investigation on moisture and indoor environment in eight Danish houses Jensen, K.R.; Jensen, R.L.; Nørgaard, J.; Justesen, R.O. and Bergsøe, N.C.	1127
Passive sampling as a method for air exchange measurements for whole building simulation of historic buildings <i>Kilian, R.; Bichlmair, S.; Wehle, B. and Holm, A.</i>	1135

Session C6 - Cooling and other low energy systems

A study on the integration of upgraded weather forecast in a predictive control of building cooling systems <i>Sasic Kalagasidis, A.</i>	1145
Exergy analysis of cooling systems and strategies <i>Molinari, M. and Karlstöm, P.</i>	1153
Relevance of modeling insulation layer in ground storage system design <i>Lazzarotto</i> , <i>A</i> .	1161
Low Exergy Systems for High-Performance Buildings and Communities <i>Schmidt, D. and Jóhannesson, G.</i>	1169
Development of a quasi-steady-state assessment method of night cooling <i>Breesch, H.; Goethals, K. and Janssens, A.</i>	1177
Evaluation of the applicability of the quasi-steady-state overheating indicator for offices and schools <i>Goethals, K. and Janssens, A.</i>	1185
Session C7 - Energy efficiency in office buildings	
The potential for energy efficient building design - differences between Europe and the Arctic <i>Vladykova, P. and Rode, C.</i>	1195
Validation and Analysis of Energy Performance Using Dynamic Simulations and Comparisons with Detailed Measurements <i>Korjenic, A.; Höfer, T.; Deseyve, C.; and Bednar, T.</i>	1203
Impact of Outdoor Climate and Life Style on the Total Energy Use in Office Buildings <i>Leeb, M.; Deseyve, C.; Höfer, T.; Korjenic, A. and Bednar, T.</i>	1211
Evaluating effects of different scenarios in the design phase on the carbon footprint of an office building <i>Matilainen, P. and Airaksinen, M.</i>	1219
Session C8 - Energy efficiency in schools and day-care buildings	
Evaluation and Parametric Optimization of the Heating Load and Comfort Conditions in a School Building <i>Almeida, R. and de Freitas, V.P.</i>	1229
Implementation of realistic boundary conditions - analysis of their effect on the net annual heating demand in passive schools <i>Wauman, B.; Breesch, H. and Saelens, D.</i>	1237
Simulation as a Tool for Optimizing Energy Demand of Rooms as a Part of Strategy "Towards Green Campuses in Egypt" <i>Samaan, M.M.; Ahmed, A.N.; Farag, O.M.A. and Khalil, M.ES.</i>	1245
Investigation of ventilation strategies for the day-care institutions Larsen, O.K.; Afshari, A. and Heiselberg, P.	1253

Larsen, O.K.; Afshari, A. and Heiselberg, P.

Energy-plus Day-care Centre for Children	1261
Hoppe, M.; Hoier, A.; Erhorn, H. and Asböck, B.	

Session C9 - Windows and solar shadings

Solar Shading Systems and Thermal Performance of Windows in Nordic Climates <i>Grynning, S.; Gustavsen, A. and Time, B.</i>	1273
Energy Savings Potential with electrochromic Switchable Glazing <i>Murphy, M.; Gustavsen, A.; Jelle, B.P. and Haase, M.</i>	1281
Assimilation of solar heat gains in residential buildings <i>Bagge, H.</i>	1289
Heat transfer in ventilated double facades with obstructions <i>Haase, M.</i>	1297
Assessment of solar shading systems for building envelopes <i>Monteiro, L.M. and Frota, A.B.</i>	1305

Session C10 - Energy efficiency in residential buildings

Natural ventilation around open ground floor with pilotis in highrise residential buildings in tropical areas <i>Sapian, A.R.; Majid, N.H. and Hokoi, S.</i>	1315
Holistic energy retrofitting of multi-storey building to low energy level <i>Morelli, M.; Tommerup, H.M.; Tafdrup, M.K. and Svendsen, S.</i>	1323
Costs of retrofit measures in the Swedish residential building stock – an evaluation for three scenarios on future energy prices <i>Mata</i> , <i>É</i> .; <i>Sasic Kalagasidis</i> , <i>A. and Johnsson</i> , <i>F</i> .	1331
The impact of physical rebound effects on the heat losses in a retrofitted dwellings <i>Deurinck, M.; Saelens, D. and Roels, S.</i>	1339
Analyses of sustainability and environmental impacts of steel framed buildings - Example from practice in Romania <i>Ungureanu, V.; Ciutina, A. and Dubina, D.</i>	1347
Session C11 - Energy efficiency in single-family houses	
Integrating Renewable Energy Generation through Demand-side-Management <i>Morgenstern, K.; Torio, H. and Sager, C.</i>	1357
A Low-energy Building under Arctic Conditions - Experiences After Five Years of Operation <i>Rode, C.; Vladykova, P. and Kotol, M.</i>	1365
Net zero-energy family houses - simple approach and built example <i>Tywoniak, J. and Staněk, K.</i>	1373
Implementing zero energy buildings in harsh Nordic climate conditions <i>Jormalainen, J.</i>	1381