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Abstract— Robots are making their way into our society and
are foreseen to become an important part in our everyday
life, at work or at home. Industrial factory layouts are moving
robots out of enclosures bringing them side by side with
human workers. As for service robots they are by definition
meant to perform tasks in our immediate proximity. To be
performed successfully, these tasks, also referred to as joint
actions, require coordination and trust. Coordination implies
that the robot needs to account for his actions and their effects
on the environment but also for changes that the user intro-
duces. Therefore, flexible planning capacities allowing on-the-fly
adaptation to what a human is requesting or doing, together
with a shared mental representation of the task, are needed.
In this paper we present (i) a symbolic knowledge system and
the way it translates into simple temporal networks (STN) to
generate actions plans, and (ii) interaction models based on
natural language. First results indicate the robot can build
plans for a joint action according to several parameters given
its conceptual semantic description. Furthermore, a human can
interactively either modify the plan or ask for explanations
about it. By several experiments we demonstrate the generation
and adaptation of these dynamic human-robot collaboration
plans.

I. INTRODUCTION

A traditional industry floor consists of distinct areas where
robots and humans cannot interact for safety reasons [1].
However, the current trends ask industries to show more
and more versatility as opposed to mass production. Sub-
sequently, the need for more intelligent machines capable of
performing tasks together with a human is equally increasing
[2]. Similarly, using robots as personal assistants in our
homes or workplaces points to developing machines capable
of taking human actions into account when reasoning about
the world and the tasks to be carried out.

We believe that those new trends are intertwined with our
understanding of Cognitive Semantics (CS). CS is part of
the Cognitive Linguistics (CL) field of research. Its main
underlying assumptions are as follows: 1. Language is not an
isolated cognitive mechanism, i.e., it supports the idea that
rather than having a module handling the knowledge and
another one handling language production: 2. Grammar is
conceptual, which compares language to a symbolic system
and links to the study of semiotics and the emergence of
coordination from the aptitude to communicate semantic
information through a symbol system. [3] 3. Learning the
language actually comes through using it [4].

Previous results showed that human teams rely heavily
on communication to establish shared plans [5] and react
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Fig. 1. Robot and human share a symbolic representation of a task. As
a result human can teach new skills to the robot (via a web interface).
This knowledge is then transformed into an action plan using the Simple
Temporal Network (STN) formalism. While the action is being performed
the human can still interactively modify the plan using natural language.

to changes while performing collaborative tasks. In our
preceding work we addressed the problem of maintaining a
conceptual model about tasks and explored interactive pro-
cesses allowing to solve ambiguities in the given commands
[6]. We also showed how it can be used by a human user to
teach new knowledge (see Fig. I).

As continuation, in this paper we introduce a mechanism
to translate the knowledge automatically into a form suitable
for task planning. Additionally, we present dialog patterns
allowing the user to access and modify the plan on-the-fly.
The following section will compare those features with the
most similar systems in the literature and through this com-
parison stress the problem addressed in this paper. Section III
will discuss the model adopted to represent the robot’s skills
and its translation into an action plan as well as the different
policies that can be used to do so. Following, the mechanisms
using the semantic information about the plan under their
symbolic forms are discussed in Section IV. Finally Section
V takes as an example an industrial benchmark in which
human and robot can collaborate (but also act independently)
to perform an assembly task.



II. RELATED WORK

The study of joint actions is not new and has deep roots in
the cognitive sciences field. The underlying cognitive mech-
anisms taking place in the process such as joint attention,
action observation, task-sharing, action coordination, and
perception of agency have been identified as core elements of
cooperation [7]. Implementations of those concepts usually
evaluate the ability of the robot to reason about the task to
perform in a cooperative fashion and its reactivity, should the
human fail to carry out a step [8]. Additionally it has been
discussed whether cooperation should be seen as an atomic
concept or if it could be broken down into sub concepts for
researchers to explore. For instance, by utilizing the concepts
of planned and emergent coordination [9].

In this paper, planned coordination is addressed. This type
of behavior implies knowledge about the different entities
involved in the tasks to perform and brings the semantics
problem to the equation. In order to successfully coordinate
its actions with a human, not only does the robot need to
reason but also communicate about its perception of the task.
It is convenient to use a model close to our understanding
based on a symbolic system [3], [10] that builds upon
semantic networks [11]. Moreover, as robots are physical
agents, designed to interact with humans, their knowledge
needs to be grounded in the real world in such a way that
they are able to bridge their perceptual inputs [12].

Reasoning thereafter lifts the interaction to achieve as
natural collaboration as possible [13]. Borrowing again con-
cepts from cognitive sciences, a Shared Cooperative Activity
(SCA) can also be seen as a mechanism in which agents
dynamically mesh their sub-plans together [14]. In other
words, this paradigm argues that a shared plan cannot be
reduced to the sum of individual plans of the agents involved.
Following this idea, collaboration then exists as a way
to reach a common goal and natural language plays an
important role as it allows to share beliefs and intentions
between agents.

Natural language can also be used to offer an intuitive
programming interface [15] after a task has been taught to
the robot by demonstrating it. All in all it appears to be a way
to bring humans and robots closer by sharing information in
the most natural way for us and thus facilitate integrating
robots in our society [16]. To ensure mutual understanding
is therefore an important aspect of communication. This
problem transposes to robots that need to be able to explain
their choices when asked about it [17]. Ultimately being
capable of such transparency is getting closer to the hope
that we could trust our robotic partners [18].

III. KNOWLEDGE, BELIEFS AND INTENTION
MODELS

This section describes the semantic representation of a
skill and its equivalent in the task planning space before
discussing ways to share models between agents.

Fig. 2. High level ontology used to represent knowledge in a symbolic
fashion. On the left the structure to handle the semantic event chain related
to a skill. On the right the structure to handle the communication from
human to robot about it.

A. Semantic skill representation

At the root of the knowledge representations for tasks
and robot capabilities lies Object Action Complexes (OACs)
[19]. They were introduced to overcome the differences
between high level representations for cognitive reasoning
and lower level representations used when controlling robots.
We generalized this representation by wrapping it around the
broader concepts of tasks and steps (see Fig. 2)

Doing so allows us to describe the Semantic Event Chain
(SEC) [20] of the skills available on the robot.

B. Simple temporal network

We review here the main concepts related to Simple
Temporal Networks (STN). An STN is a graph S in which
each node represent a timepoint and the edges are temporal
constraints between them [21].

S = (T , C)

Where T is a set of time-point variables : {t1, ..., tn} and
C temporal constraints : tj − ti ≤ δ with δ being a real
number.

When constructing the graph it is convenient to take a zero
point to serve as a reference when expressing the constraints.
A solution to an STN is a full assignments to the timepoints
in T : {t1 = w1, t2 = w2, ..., tn = wn}

The traditional algorithm to solve an STN involves build-
ing the distance matrix of the network. The constraints that
are intervals are rewritten as a pair of directed edges such
that the original one takes the value of the upper bound and
the second one the opposite of the lower bound. The All
Pairs Shortest Paths (APSP) form obtained using for example
the Floyd-Warshall Algorithm [22] is further necessary to
transform the graph into a dispatchable form [23]. After this
step the STN is ready to be solved, but to make execution
more efficient pre computations are often made to lower the
cost of updating the distance matrix.



Fig. 3. Parsing a sentence occurs in two steps. First the robot determines
the type of the sentence. It can be a command, a description or a question.
Then specific parsing rules are applied respectively to decide the subject of
the sentence.

Since their first apparition in 1990, STNs have been
extended to gain more and more flexibility [24]. We build
upon those using a pair containing a base solution and a set
of differences. The base solution consists in a relaxed form
of the network while the set of differences holds the various
effects that choosing a certain step over another step can
have.

C. Model sharing

To be successful the two agents need to be coordinated.
Language is an important factor to achieve coordination in
human teams [14].

1) Dialog patterns: We explored a two steps parsing (see
Fig. 3) in which the type of an utterance is first matched
against predefined patterns. To each type is then associated
a certain number of heuristics that will infer the subject of
the utterance. Questions, description and commands are the
available types. Questions can be about the location of an
object for instance. Locations that could have been taught
through a description. Descriptions also serve to transmit
the information about the completion of an action. Lastly,
commands are the (action, target) pairs used to trigger the
robot’s skills.

2) Beliefs about the human: Throughout the interactions,
information will be gathered to build a certain model of the
human. The knowledge base will attribute a context to any
new agent known by the robot. These contexts allow to obtain
perspective taking, at least to some extent by being able to
maintain distinct states for the same entities withing the same
reasoning module.

IV. DYNAMIC AND INTERACTIVE PLANNING

This section describes the different planning policies ex-
plored and the mechanism allowing a human to use natural
language to modify the task plan during its execution.

A. Planning policies

The initial model includes disjunctions with binary con-
straints over the robot and the human performances. It thus
needs to be projected to come back to a regular STN. In

Fig. 4. Beginning of the timeline from a simulation example. 1. Human
and robot both start performing an action. The human is a bit faster than
the robot 2. The human however has to wait for the robot to complete its
next action. It will thus enter a waiting state. 3. When the robot is done,
work and idle times are updated. The human leaves the waiting state to get
a chance to reevaluate his available steps. The execution then starts again
normally.

other words it is the moment tasks are attributed to an
agent and it can be done following various policies. The
distribution relies on a simulation of the task execution (see
Fig. 4). Utilizing the worst case scenario times for each
action results in simulation output that specifies the working
times of human and robot respectively together with their
idle times (see Algorithm 1).

while not all timepoints stamped with execution time do
if robot time ahead and not human waiting then

if has available task then
human working time = simulate step(step);
update list steps;
if robot is waiting then

robot waiting = False;
update robot idle time

else
human waiting = True

else if human time ahead and not robot waiting
then

if has available task then
robot working time = simulate step(step);
update list steps;
if human is waiting then

human waiting = False;
update human idle time

else
robot waiting = True

end
Algorithm 1: Simulation algorithm calculating the working
and idle times of the human and the robot

The algorithm runs a simulation of the skill until full
completion when all the nodes of the plan are marked as
done. It uses the simulated working timelines of the robot
and the human, trying to attribute a task to the least advanced
in time given that this agent has available steps in the current
distribution being evaluated. Otherwise the current agent
enters a waiting state. When the partner completes his next
step, it changes back the state of the first worker to active



to reevaluate the available steps at the next iteration. Doing
so, the idle time for the waiting agent is updated by the
difference between the working times of the two agents and
the working time is set to match the working time of the
teammate.

Also summarized in Table I, the task distribution can be
done according to the following policies:

1) Even distribution: Attribute tasks aiming at having
even working times :

arg min
worki,workj

(‖Σworkri − Σworkhj ‖)

2) Capacity based: Attribute tasks aiming at minimizing
a working time while keeping idle time as low as possible:

arg min
worki,workj

(Σworkri + Σworkhj )

3) Activity based: Attribute tasks aiming at minimizing
an idle time while keeping working time as low as possible:

arg min
worki,workj

(Σidleri + Σidlehj ),

where in each case superscript r and h denotes robot and
human, respectively.

B. Regular execution

The overall process governing the excution of a task is
explained in Algorithm 2:

while not all timepoints stamped with execution time do
perform one;
if success then

mark as done;
update links;

else
warn human;

end
end

Algorithm 2: Execution to reach a solution for the STN

When it starts, the algorithm computes all the valid plans
for the task, picks one and start executing it. In parallel the
human is also going to perform actions and can warn the
robot by telling it after completing one. Every time the list
of available plans is updated to take into account only the
temporally consistent distributions matching the past events.
If the robot cannot perform any action it will explicitly
inform the human that he or she needs to complete something
before the robot can move on.

C. Interactive plan modifications

Using the dialog patterns previously described, the user
can, while performing a task, interrupt the current execution
and attribute a task to the robot or adopt a task it had initially
planned to carry out.

TABLE I
PLANNING POLICIES AND THEIR EXPECTED INFLUENCE ON THE TIME

VARIABLES OF THE TASK EXECUTION.

Policy Optimization target Expected result

Balanced distribution workrt , workht Equal amount of time
working regardless
of the time spent
inactive.

Capacity based workrt , workht Low working time but
the idle time might
increase

Activity based idlert , idle
h
t Low idle time but in-

dividual working time
might be longer

1) Trigger plan modification: A plan can be modified in
two ways. The human can decide to carry out a step that
was initially planned for the robot and vice versa. Modifying
the plan in reality means imposing a constraint on the task
distribution. The robot then updates the list of valid plans
similarly to the update occurring after completing a task,
retaining only the alternatives matching with the human
request.

2) Backpropagation rules: Given that the graph is in a
dispatchable form, modifications need only to be propagated
to neighbouring timepoints and can be resolved using trian-
gular reductions. Applying these rules after the completion
of a task allows to check the consistency of a plan by taking
into account the real execution time of the timepoints in
the STN. We implemented two rules also refered to as the
precede and the follow case [25].

V. PRACTICAL SCENARIO

As assembly task we consider the Cranfield Assembly
Benchmark [26], which is composed of nine steps. This task
is interesting because the steps are not sequential. Some can
be done independently while others require previous steps
to be executed (see Fig. 5). In particular, steps 1-2, are the
assembly of the round small pegs in the holes of the back
faceplate, steps 4-5 are the assembly of the square ones,
while step 3 brings the shaft. Step 6 is the assembly of
the pendulum on top of the shaft and step 7 completes it
with the pendulum head. Finally in step 8 the separator is
assembled on top of the square pegs before the front plate
can be adjusted as step 9. Regarding our implementations, all
our developments are available open source for the robotics
community1.

Running the tests for our three policies leads to the task
plans depicted in Fig. 6. Fig. 7 describes a successful plan
execution for a balanced plan, where the human interrupts the
plan and changes task allocation step 9 from human to robot.
In addition, the means of work and idle times for the human
and robot, respectively, are collected in Table II according
to the policy used to plan for the task. They were calculated

1https://zorrander.gitlab.io/franka-web-app/



Fig. 5. Parts involved in the Cranfield assembly benchmark. Left figure shows the descriptive shapes for each part and their names. The assembly steps
relate to the parts as follows. Steps 1-2: assembly of the round pegs in the holes of the back faceplate, steps 4-5: assembly of the square pegs in the back
faceplate, step 3: assembly of the shaft in the back faceplate, step 6: assembly of the pendulum on top of the shaft, step 7: assembly of the pendulum head
on the pendulum, step 8: assembly of the separator on top of the square pegs, Step 9: assembly of the front plate on the pre-assembled part. Right figure
shows the real parts manufactured by 3D printing, next to a robot.

TABLE II
WORK AND IDLE TIME MEANS FOR THE HUMAN AND THE ROBOT GIVEN

A PLANNING POLICY.

Time group Balanced pol-
icy [sec]

Capacity pol-
icy [sec]

Activity policy
[sec]

workht 160 118 119

idleht 73 9 12

workht 160 121 121

idlert 19 14 12

using default times of 20 seconds for a human and 30 seconds
for the robot. These are indicative times obtained by trials;
typically, the human is slightly faster in the assembly tasks.
This shows that the balanced policy offered less performance
with regard to both work and idle times. Nonetheless it seems
like the equilibrium is maintained when optimizing for lower
working or idling times. Regarding these two cases the first
results would suggests that with the current implementation
they achieve similar performance.

VI. DISCUSSION AND FUTURE WORK

The work presented here relies blindly on the correct
statements from a human to assist in an assembly task. If
the human utters a wrong statement a part, a task would
need to be restarted. One solution to this is to take visual
detection into this task planning and only rely on spoken
language when the task plan is changed. This is motivated
by the positive experience in experiments, where language
proved to be useful for fast and reliable interaction [6].

On the other hand, language processing is complex and
can not include all possible requests a human could perform.
However, a combination of dialog patterns and even simplis-
tic nlp algorithms seems viable, in particular in industrial
settings where the environment and the tasks are predictable.

Deciding on a planning policy depends on many factors,
that are often out of control for a human operator. Adopting

the fastest policy for execution is not always the best option
and changing policies might not even be in the best interest
of the task. In our view, a solution to this should be sought
per case, therefore, future work will explore how properties
of an operator and a robot can be taken into account in
the planning policies. For example, knowing that a robot
should do the heavy lifting and a human should do the fine
compliant assembly effects a shared task plan considerably
[2]. Automated reasoning to achieve such a plan can, again,
be taken into account by a knowledge and reasoning system.

VII. CONCLUSION
In this work we propose (i) a symbolic knowledge system

that translates a task into simple temporal networks (STN)
to generate actions plans, and (ii) an interaction model based
on natural language resulting in direct modifications of the
previously created action plan. This action plan generation
and action plan adaption is integrated in our conceptual
knowledge base, where users can define new concepts for
robots in an intuitive way. Action planning utilizes a lan-
guage model based on object-action complexes (OACs) that
have also proven themselves useful when solving ambiguities
arising from commands given using natural language. The
system is demonstrated using a benchmark for an assembly
task in which human and robot can collaborate closely but
also act individually at times. By defining three planning
policies (balanced, capacity and activity) we demonstrate
how the robot uses task knowledge to generate and adapt
plans on-the-fly automatically.
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