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The immunosuppressive microenvironment in
glioblastoma (GBM) prevents an efficient antitumoral
immune response and enables tumor formation and
growth. Although an understanding of the nature of
immunosuppression is still largely lacking, it is impor-
tant for successful cancer treatment through immune
system modulation. To gain insight into immunosup-
pression in GBM, we performed a computational
analysis to model relative immune cell content and
type of immune response in each GBM tumor sample
from The Cancer Genome Atlas RNA-seq data set.
We uncovered high variability in immune system-
related responses and in the composition of the micro-
environment across the cohort, suggesting immuno-
logic diversity. Immune cell compositions were asso-
ciated with typical alterations such as IDH mutation
or inactivating NF1 mutation/deletion. Furthermore,
our analysis identified three GBM subgroups present-

TCGA glioblastoma
RNA-seq samples

RNA-seq from
reference cell types

&

DOeeT

Clustering and
gene enrichment

analysis =
LN | - ENpTE
Immune response\‘

related signatures

Relative cell
type proportions

Association to
alterations and
classifications

Negative Humoral Cellular-like
BO | @G | 6
e | 68 | éu
IDH1 mut CD4+ T cells TR
MARCH9 amp B cells

ing different adaptive immune responses: negative,
humoral, and cellular-like. These subgroups were

Glioblastoma characterization revealed heterogeneity in immune microenvironment, three
major types of immune responses as well as IDH1 mutation, and other possible new markers

for immunosuppression.
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linked to transcriptional GBM subtypes and typical
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genetic alterations. All G-CIMP and IDH-mutated
samples were in the negative group, which was also
enriched by cases with focal amplification of CDK4

and MARCHY. IDH1-mutated samples showed lower expression and higher DNA methylation of MHC-I-type HLA genes.
Overall, our analysis reveals heterogeneity in the immune microenvironment of GBM and identifies new markers for
immunosuppression. Characterization of diverse immune responses will facilitate patient stratification and improve person-

alized immunotherapy in the future.

Significance: This study utilizes a computational approach to characterize the immune environments in glioblastoma and
shows that glioblastoma immune microenvironments can be classified into three major subgroups, which are linked to typical
glioblastoma alterations such as IDH mutation, NF1 inactivation, and CDK4-MARCHY locus amplification.

Graphical Abstract: http://cancerres.aacrjournals.org/content/canres/78/19/5574/F1.large.jpg. Cancer Res; 78(19); 5574-85.

©2018 AACR.

'BioMediTech Institute and Faculty of Medicine and Life Sciences, University
of Tampere, Tampere, Finland. 2Science Center, Tampere University Hospital,
Tampere, Finland.

Note: Supplementary data for this article are available at Cancer Research
Online (http://cancerres.aacrjournals.org/).

Corresponding Authors: Kirsi J. Granberg, University of Tampere, Arvo
Ylpon katu 34, Tampere 33520, Finland. Phone: 358-50-318-5819; E-mail:
kirsi.granberg@uta.fi; and Matti Nykter, University of Tampere, Faculty of
Medicine and Life Sciences, P.O. Box 100, 33014 University of Tampere,
Tampere, Finland. Phone: 358-50-318-6869; E-mail: matti.nykter@uta.fi

doi: 10.1158/0008-5472.CAN-17-3714

©2018 American Association for Cancer Research.

Cancer Res; 78(19) October 1, 2018

Introduction

Glioblastoma (GBM) is the most common malignant brain
tumor in adults. Despite improvements in treatment, the medi-
an survival time of patients with GBM remains approximately
only 15 months after diagnosis (1, 2). Poor prognosis is mostly
due to the high proliferation rate, treatment resistance against
chemotherapy and all tested targeted therapies, and aggressive
infiltration of the cancer cells into surrounding nonmalignant
brain tissue. Immunotherapies, which have delivered encour-
aging and long-lasting responses in many human cancers (3),
have become a topic of great interest in GBM as well (4-6).
Their general scope is to overcome the immunosuppression in
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the tumor microenvironment to activate the patient's own
immune system to fight against the tumor. Immunosuppres-
sion can be generated via different mechanisms, such as reg-
ulatory T cells, checkpoint inhibitors and by secreting cytokines
that inhibit the function of the effector cells (7). Understanding
the mechanisms through which immunosuppression is estab-
lished in GBM tumors is the key for successful personalized
immunotherapies in the near future. The immune microenvi-
ronment of GBM has been characterized by the presence of
specific immune cell types, but the implications of these cell
types to the disease state are not well understood. Some studies
associate the presence of tumor-infiltrating lymphocytes (TIL)
with improved patient overall survival in GBM (8, 9) while
others have not observed such a correlation (10, 11). Likewise,
the total number of macrophages has been reported to cor-
relate positively with patient survival (12) but opposite results
have also been reported (13). Thus, the clinical relevance of
TIL and macrophage infiltration remains unclear.

Both microglia and peripherally recruited macrophages can
act as tumor-associated macrophages in the GBM microenvi-
ronment (14-16). Infiltration of either or both is a common
feature in GBM (4, 17-19), while the lymphocyte infiltration
rate is generally low (19, 20). The number of immune cells in
the GBM microenvironment has been associated with specific
alterations (21-24). For example, IDH mutation has recently
been shown to associate with decreased immune cell infiltra-
tion (22, 23), whereas inactivated NF1 has been associated with
increased macrophage infiltration (24).

We developed a computational analysis framework for model-
ing the GBM immune microenvironment to better understand the
function and role of the immune system in GBM. Our approach
builds on the regression analysis-based gene expression decon-
volution that has been successfully used to estimate relative
proportions of selected cell types from RNA expression data
(25-27). We used regression analysis to computationally estimate
the proportions of immune cell types and other normal cell
components in the GBM microenvironment. The regression anal-
ysis was combined with a data-driven analysis of immune system
and immune response-related gene sets. This approach enabled
us to study different prevailing immunologic states in the GBM
microenvironment and facilitated the analysis of both structural
and functional aspects of the tumor-immune system interaction.

Materials and Methods

RNA-seq data processing

Raw sequencing reads from RNA-seq experiments of 156
primary GBM samples generated by The Cancer Genome Atlas
(TCGA) were downloaded from the NCI Genomic Data Com-
mons. Raw sequencing reads from RNA-seq data of normal cell
types [granulocyte, macrophage M1, macrophage M2, neuron,
fibroblast, CD4" T cell, CD8" T cell, endothelial cell, neutro-
phil, B cell, and neural stem cell (NSC)| and RNA-seq of brain
tissue were obtained from the NCBI Gene Expression Omnibus
(GEO; Supplementary Table S1). Sequencing reads were
aligned using STAR aligner version 2.4.0 (28) and Ensembl
reference genome GRC37. Expression levels were quantified as
RPKM based on Gencode annotations release 19 using bedtools
version 2.19.0. Data were quantile normalized and log, trans-
formed. In the case of multiple GBM samples from the same
patient (patients TCGA-06-0211 and TCGA-06-0156) in the
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TCGA data set, samples were combined by taking the mean. The
final processed TCGA data set consisted of 154 unique GBM
samples. Likewise, the mean expressions of macrophage M1
and macrophage M2 were used as a macrophage sample, and
the mean expression of neutrophil and granulocyte was used
as a granulocyte sample in the analysis. For validation, an
independent RNA-seq data set including of 59 primary GBM
samples and two RNA-seq data sets, including whole blood
samples containing 5 (data set 1) and 2 (data set 2) samples
with observed cell proportions (27), were downloaded from
GEO and processed as described above.

Microarray analysis

Raw microarray data from mixtures of four transformed cell
lines and data from the individual cell lines were downloaded
from the GEO (accession number GSE11058). Mixtures of cell
lines contain Raji (from B cells), IM-9 (from B cells), Jurkat (from
T cells), and THP-1 (from monocytes) cell lines in four different
known proportions. R packages "affy" and "annotate" were used
to process the raw data. The data were background corrected using
RMA and the probe sets were annotated using the "hgul33plus2.
db" (version 2.1) array annotation data.

Clinical data, genomic alterations, and methylation data

Clinical data for GBM samples were downloaded from
TCGA data portal. Mutation and copy-number variation
(determined using GISTIC 2.0) data were downloaded from
cBioPortal (29, 30) for typically mutated and altered genes in
GBM (Supplementary Table S1). Beta values from Illumina
Infinium Human DNA Methylation 450 array of 155 GBM
samples generated by TCGA were downloaded from the NCI
Genomic Data Commons.

Statistical analyses

Statistical analyses were performed using R version 3.2.2. All
analyses testing for differences in cluster activities were performed
using Wilcoxon rank-sum test, and all analyses testing for differ-
ences in immune cell proportions were performed using Fisher
exact test. In Fisher exact test, samples were divided into groups
based on, e.g., alteration and subgroup, and based on whether the
coefficient of a specific immune cell type was negative, zero, or
positive. Associations with patient survival were tested using the
log-rank test.

Identification of the immune system-related gene clusters

Clustering analysis was performed on gene expression data of
154 GBM samples by using the Markov cluster algorithm (31) and
absolute values of Pearson correlation as a similarity metric.
Before clustering analysis, genes were filtered based on their
variance and the genes with low variance, below 0.035, were
omitted. Filtering resulted in expression profiles for 27,172 genes.
Clusters containing fewer than 10 genes were excluded from the
analysis. For the remaining gene clusters, gene set enrichment for
Gene Ontology categories and Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathways was tested using Fisher exact test.
Categories with P values smaller than 0.05 were considered
statistically significant. After the enrichment analysis, the clusters
that showed an enrichment of immune response-related Gene
Ontology and KEGG pathway terms were chosen for further
analyses and named based on the enrichments and Ingenuity
Pathway Analysis (IPA; Qiagen) results.
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Regression analysis

Regression analysis was performed for RNA-seq and micro-
array data as follows: in each sample, the expression profile of
each gene was modeled as the sum of the expression profiles of
that gene times the proportion of each cell type in the sample
(principle outlined in Supplementary Fig. S1). For each sample
separately, this can be written as an equation:

Y :X/g + xrefﬁref + :30 + g, where X S Rmxn? ﬂ S Rna Y € Rm',

where X is the matrix of the expression levels of m genes (rows) in
n cell types (columns), y is the vector of expression levels of all
genes in one sample, B is the vector of relative levels of cell types
present in the sample, x.f is a median sample composed from a
separate sample group, fB,.¢ is the relative level of median sample
presentin the sample, f, is constant, and ¢ is the residual. We use
logarithmic data for expression levels in X and y, so that the
equation is a locally linear approximation of the variability in
the cell type content between samples around the reference
expression profile. The logarithmic data are also a better fit to
our model, and involves the effects of genes with low expression
in the model fit. To estimate B, B¢, and B, in the equation, linear
regression with elastic-net regularization (32) was used, mini-
mizing the error criterion
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where A >0, 0 <a < 1.

Elastic-net mixing parameter « mixes ridge (¢« = 0) and lasso
(o = 1) regression. The regularization parameter A, which gives
the most regularized model such that the error is within one
standard error of the minimum, was chosen using 10-fold cross-
validation, and a value of 0.5 was used for the elastic-net mixing
parameter .

Code for the regression analysis is available at http://github.
com/NykterLab/GBM_immune.

Validation of the regression analysis using simulated and real
measurement data

For generation of validation data, RNA-seq data from four
normal cell types (B cell, granulocyte, macrophage, and neuron)
and from a randomly chosen GBM sample (TCGA-27-1834) were
used as a starting point. First, 20 different proportions of GBM
sample were used from range [0, 1]. The proportions of four
normal cell types were randomly chosen from the range [0, 1] so
that the proportions of cell types and the GBM sample added up to
one for each sample. The expression profiles were weighted with
the corresponding proportions and added together. Noise was
added to the simulated samples (0%-100% of the variance of
the data). One hundred samples were simulated using this process
in each case.

Next, to test the effect of the missing reference cell type, the
proportion of the GBM sample was set to 0.8 and the propor-
tion of macrophage was set to 16 different proportions from the
range [0, 0.15]. Again, the proportions of other cell types were
randomly chosen from the range [0,1] so that the total pro-

Cancer Res; 78(19) October 1, 2018

portion of all cell types and GBM sample was one for each
sample and weighted expression profiles were added together.
Noise was also added to these simulated samples (0%-100% of
the variance of the data). As a third validation data set, micro-
array data from mixtures of four transformed cell lines and
individual cell lines were used.

The regression analysis was performed for all simulated, cell
line data, data set 1, and data set 2 as follows. Regression
analysis was performed for all five data sets using all the genes
in the identified 8 immune system-related gene clusters. For
the first set of simulated samples, all four normal cell types and
median GBM reference were used as reference cell types. The
GBM reference was composed by taking the median from the
expression of 12 randomly chosen GBM samples. For sets of
simulated samples with varying macrophage proportion, the
regression analysis was performed without the expression pro-
file of macrophage as reference. For mixtures of four cell lines,
all cell lines were used as a reference together with a median
mixture sample in the regression analysis. One replicate of each
mixture was randomly chosen and the resulting four samples
were used to generate the median sample, whereas the regres-
sion analysis was performed for the remaining replicates. For
data set 1, medians of the B-cell and T-cell profiles, neutrophil,
and macrophage were used as reference cell types together with
the median of four whole blood samples. For data set 2,
medians of the T-cell profiles, B cell, and macrophage were
used as reference cell types. No median sample was used due to
the low number of samples.

Regression analysis for glioblastoma samples

The regression analysis for the GBM samples was performed
as described for 142 GBM samples not used for the GBM
reference sample. Data from normal cell types (granulocyte,
macrophage, neuron, fibroblast, endothelial cell, CD4V" T cell,
CD8" T cell, B cell, and NSC) and normal brain tissue were
used as explanatory variables. In addition, a GBM reference was
used as an explanatory variable.

Cluster activity

For each identified immune-related cluster, cluster activity
was calculated as follows. For each gene, expression values were
scaled to the interval [0,1] after truncating values below the
third and above the 97th percentiles to corresponding percen-
tiles to remove outliers from the data. As some of the clusters
contained a smaller subset of genes that negatively correlate
with other genes in the cluster, cluster activity was calculated as
a median of the majority of genes having a positive pairwise
correlation with each other.

Clustering

Data in heat maps were clustered using Euclidean distance and
complete linkage if not otherwise specified.

A consensus clustering of samples was performed using
cluster activities from all 8 immune system-related clusters,
with Pearson correlation as a similarity metric and k-means
clustering.

Demethylation experiments

BT142mut glioma cells were purchased from the ATCC,
authenticated with targeted sequencing and grown under recom-
mended culture conditions with regular Mycoplasma testing.
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Cells were seeded onto 24-well plates (120,000 cells/well) and
treated with 1 pmol/L 5-aza-2’-deoxycytidine (abbreviated as
DAC, Sigma Aldrich) or corresponding DMSO control for 7 days.
The drug was replenished every other day.

Quantitative real-time PCR analysis

Total RNA was extracted using an RNeasy Mini kit (Qiagen).
HLA and GAPDH (normalization control) expression (primer
sequences in Supplementary Table S1) was measured with CFX96
Real-Time PCR Detection System (Bio-Rad Laboratories) using
Maxima SYBR Green qPCR master mix (ThermoFisher Scientific)
without ROX.

Results

Patterns of immune response-related gene signatures in
glioblastoma

The proportion of nonmalignant cells in the TCGA GBM
tumor samples can be up to 40% (33). This normal cell
contamination includes stromal cells but also accumulated
immune cells that are likely to induce immune response-
related signatures into the expression data. To extract these
signatures from 154 of the TCGA RNA-seq samples generated
from primary GBMs (see Materials and Methods, Supplemen-
tary Table S2), we organized all the genes into gene sets based
on coexpression using the Markov cluster algorithm (31) and
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chose immune system-related gene sets from them. Next,
gene set enrichment analysis was used to identify 8 clusters
that showed a statistical enrichment of immune responses
related to Gene Ontology or KEGG pathway terms (Fig. 1A;
Supplementary Table S3). These clusters, containing 17 to
1,436 genes, were considered as signatures for immune system
activity in the tumor microenvironment. For each cluster,
cluster activity was quantified (see Materials and Methods).
Different clusters had distinct cluster activity profiles across the
patient cohort (Fig. 1B), revealing the heterogeneity in immune
system-related responses in GBM.

We ran the IPA upstream analysis for the genes in each cluster
(Supplementary Table S4) and used this information together
with Gene Ontology and KEGG enrichments when naming the
gene clusters. Four clusters ("macrophages and T-cell response,"
"humoral response and lymphocytes," "antigen presentation
and interferon response,” and "gamma delta T cells") are strong-
ly associated with immune responses whereas three clusters
("negative regulation of lymphocyte response," "leukocyte migra-
tion" and "leukocyte differentiation and chemotaxis") contain a
smaller proportion of immune response-related terms. Lower
proportions of immune-related associations may result from
correlation between immune response and some other cellular
processes in the tumor.

The largest cluster, called "macrophages and T-cell response,"
contains several macrophage and lymphocyte-related genes,
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Immune response-related gene clusters show variable expression patterns in glioblastoma. A, Immune system-related Gene Ontology and KEGG
pathway enrichments in identified immune response-related gene clusters. Gene clusters were generated using the Markov cluster algorithm. Cluster
sizes (number of the genes) are visualized as bar plots on the right side of the heat map that visualizes enrichment P values for each term. B, Immune
cluster activities vary between samples. Cluster activity for each immune system-related gene cluster was determined by scaling each of the genes to
range between O and 1 and then calculating the median expression of the majority of the genes with a positive pairwise correlation to each other.
Hierarchical clustering with Pearson correlation was used to organize samples and clusters in the heat map.

www.aacrjournals.org

Downloaded from cancerres.aacrjournals.org on October 17,

Cancer Res; 78(19) October 1, 2018

2020. © 2018 American Association for Cancer Research.

5577


http://cancerres.aacrjournals.org/

5578

Published OnlineFirst June 19, 2018; DOI: 10.1158/0008-5472.CAN-17-3714

Luoto et al.

and the cluster has many inflammation-related upstream reg-
ulators, e.g., IL10, IL6, STAT3, NFkB, TLR4, and MYDS88 (Sup-
plementary Tables S2 and S4). Several genes in this cluster, such
as FOXP3, IL2, TGFB1, and ILG, are linked to the regulation and
function of regulatory T cells (Treg) and Th17 cells, but
the majority of lymphocyte-associated genes are general CD4"
T-cell genes, such as CDs and interleukin receptors. On the
other hand, the "humoral response and lymphocytes" cluster
was associated with many Th2- and B-cell-related regulators,
such as IL4, CD3, EBF1, CD40, and CD79A. The "gamma
delta T cells" cluster includes several gamma delta T-cell TCR
subunits as well as other genes involved in cellular and T-cell
immune responses. Both clusters "antigen presentation and
interferon response" and "negative regulation of T-cell activa-
tion, PD-L1" show association with interferon responses
but with slight differences: the former is associated with type
I interferons, e.g., different IFNAs and IFNBs as upstream
regulators, whereas the latter is associated with type II inter-
feron IFN™ response and IFNG is an upstream regulator of this
cluster. IFN™ is known to induce PD-L1 expression (34, 35).
The "negative regulation of lymphocyte response" cluster
shows positive associations with many central nervous system-—
related terms. It was named due to the associations with
negative regulation of lymphocyte chemotaxis and with the
negative regulation of antigen processing and presentation.

Development and validation of the model for estimation of
immune cell composition

We developed a regression model (see Materials and Meth-
ods) that utilizes the expression of genes from the selected
immune system-related clusters to understand the composi-
tion of the microenvironment in more detail. The gene expres-
sion pattern in each sample was modeled as a combination of
the reference samples representing cell and tissue types that can
be present in the microenvironment. For the initial method
validation, we computationally mixed measurement data from
immune cell types to obtain simulated data sets of varying
quality (see Materials and Methods). We ran the regression
analysis for these simulated datasets in two different condi-
tions: (i) with varying proportions of GBM and (ii) with the
lack of one reference cell type as an explanatory component. In
all the cases, our model was able to infer the coefficients with
high accuracy (Supplementary Fig. S2). Missing a reference
cell type has the largest effect on the accuracy of the model
(Supplementary Fig. S2).

To validate the ability of our model to estimate the relative
composition of the microenvironment from real measurement
data, we applied the model to expression data from mixtures
of four cell lines of immune origin and for two different
RNA-seq datasets from whole blood samples (see Materials
and Methods). With these real data, our model was able to infer
the relative cell compositions with high accuracy (Supplemen-
tary Figs. S2 and S3).

GBM samples differ in their estimated immune cell
composition

Next, we modeled the composition of the microenvironment
in GBM samples. Expression profiles from 9 normal cell types
and normal brain tissue were used to infer the regression
coefficients using genes from immune system-related clusters.
The GBM reference was included in the regression model type
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to improve its performance. As a consequence, relative cell
components should be interpreted as differences from the
median GBM reference. The resulting coefficients for immune
cells and all the cell types and samples are shown in Fig. 2A
and Supplementary Fig. S4, respectively. The regression coeffi-
cients are referred to as relative immune cell components in
later analyses. The obtained results reveal a high degree of
diversity with interesting patterns of contributions of immune
cell types to the expression profiles across the samples. The
sum of our immune cell type estimates correlated with the
leukocyte component estimated from DNA methylation data
from same GBM tumors and our results were also consistent
with results obtained with the CIBERSORT method (Supple-
mentary Fig. S5; ref. 25).

We wanted to determine the associations between the esti-
mated immune cell type components and cluster activities to
identify the most informative clusters in the context of immune
cell type compositions. This was done using Pearson correlation.
The strongest positive correlations were observed between the
activity of the "humoral response and lymphocytes" cluster and
components of B cells and CD4" T cells (Fig. 2B). Macrophage
components had the strongest association with activity of the
"macrophage and T-cell response” cluster. All the immune cell
components except the CD8" T-cell component had a negative
correlation with the activity of the "negative regulation of
lymphocyte response" cluster. The CD8* T-cell component had
a negative correlation with clusters "macrophage and T-cell
response,” "leukocyte migration" and "leukocyte differentiation
and chemotaxis." As the "macrophage and T-cell response”
cluster was positively associated with CD4" T-cell accumulation
and the cluster includes several typical CD4*% T-cell genes,
negative association with the CD8" T-cell component suggests
that CD4"% and CD8" T cells do not really coaccumulate in
the GBM microenvironment. The lack of coaccumulation of
CD4" and CD8™ T cells can also be observed in Fig. 2A, and it
can be considered one of the failures impairing a successful
antitumoral response.

Immune system-related responses are associated with
genetic alterations and patient survival

When we compared the estimated immune cell components
and cluster activities to typical genetic alterations in GBM,
several associations were observed (Fig. 2C; Supplementary
Fig. S6 and Supplementary Table S5). Samples with an IDH]1
mutation or amplification of the genetic locus containing
CDK4 were associated with a lower macrophage component
(P < 0.05 and P < 0.01, respectively, Fisher exact test), whereas
NF1 inactivation was associated with higher macrophage com-
ponent (P < 0.001, Fisher exact test; Fig. 2C). Likewise, the
activity of the "macrophage and T-cell response" cluster was
decreased in samples with CDK4 locus amplification (P < 0.05,
Wilcoxon rank-sum test) and increased in samples with NF1
inactivation (P < 0.05, Wilcoxon rank-sum test; Fig. 2C). IDH1-
mutated samples were also associated with a lower CD4™" T-cell
component (P < 0.05, Fisher exact test) and CDK4 locus-
amplified samples had a lower CD4" T-cell component com-
pared with the samples with CDK4 locus gain (P < 0.05, Fisher
exact test; Fig. 2C).

The association of CDK4 amplification with a low CD4™"
T-cell component, low macrophage component, high activity of
the "negative regulation of lymphocyte response" cluster, and
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Figure 2.

Immune cell type compositions are associated with cluster activities and typical genetic alterations in glioblastoma. A, Varying immune cell compositions
are observed in GBM. Regression analysis results for five immune cell types are shown. Coefficients are negative or positive depending on

whether the estimated cell type composition is lower or higher than in the GBM reference. Compositions of selected cell types were computationally estimated
by applying linear regression with elastic-net regularization. B, Compositions of analyzed immune cell types correlate (Pearson correlation) with specific
immune response-related clusters. Hierarchical clustering of cell type components and clusters is based on Pearson correlation. C, /DHI mutation and
amplification of the CDK4-MARCH9 locus (genomic locus containing CDK4 and MARCH9 genes) are associated with a lower macrophage component, whereas
NFT inactivation is associated with a higher macrophage component (Fisher exact test). CDK4 amplification and NFT inactivation are correspondingly
associated with the activity of the "macrophage and T-cell response” cluster (Wilcoxon rank-sum test). /DHI mutation and CDK4 amplification are also
associated with lower CD4™ T-cell component (Fisher exact test). Samples are grouped in figures based on the following genomic alterations: /DHT mutation,
DNA copy number in CDK4-MARCH9 locus, or inactivating NFT mutation/deletion. The colors in the bars describe the relative proportions of CD4™"

T cells and macrophages in the samples in each group. The boxes visualize the activity of the cluster "macrophages and T-cell response” in each sample
group. *, P < 0.05; **, P < 0.01; ***, P < 0.001. D, Within samples with a high macrophage component, higher activity of the "antigen presentation and
IFN response” cluster is associated with better overall patient survival and lower activity of the "humoral response and lymphocytes” cluster tends to predict
better overall patient survival in the same cohort (log-rank test). Distributions of the cluster activities in the analyzed cohort are illustrated in the histograms.
Thresholds used in the survival analysis (median for "antigen presentation and IFN response” cluster and 0.060 for "humoral response and lymphocytes”
cluster) are marked with a red line to the histograms.
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low activity of the "macrophage and T-cell response" cluster
was somewhat surprising, as CDK4 is a known cell-cycle reg-
ulator. As genes that are coamplified with CDK4 might generate
the association, we screened the adjacent genomic neighbor-
hood for genes with a potential to dysregulate the immune
system. The adjacent AGAP2, TSPAN31, and MARCHY genes
were focally coamplified with CDK4 in TCGA GBM data (Sup-
plementary Table S6). Among them, an E3 ubiquitin-protein
ligase MARCH9 was the most prominent candidate as it is
known to mediate MHC-I ubiquitination, which targets MHC-I
to lysosomal degradation. This decreases MCH-I levels on the
cell surface (36), leading to impaired antigen presentation by
MARCH? overexpressing cells. The locus containing the focal
amplification of CDK4 and MARCHY will be referred to as
CDK4-MARCHY locus in this article. Despite the CDK4-
MARCH)Y locus amplification and IDH mutation being simi-
larly associated with a shortage of immune responses, CDK4
amplification was not associated with patient survival in the
cohort.

When we analyzed how cluster activities and immune cell
type components are associated with GBM transcriptional
subclassification (37), several significant associations were dis-
covered (Supplementary Figs. S7 and S8). High cluster activities
were observed in mesenchymal samples; this was most evi-
dently the case for the "macrophage and T-cell response" cluster
(P < 0.01, Wilcoxon rank-sum test; Supplementary Fig. S7).
Similarly, the macrophage component was also high in the
mesenchymal subtype (P < 0.001, Fisher exact test; Supple-
mentary Fig. $8). Furthermore, high B-cell and CD4" T com-
ponents were commonly observed in the mesenchymal sam-
ples, consistent with a previous report (Supplementary Fig. S8;
ref. 21). On the other hand, cluster activities and immune cell
components tend to be low in proneural samples, except for the
cluster "negative regulation of lymphocyte response," which
had a significantly higher activity in proneural samples than in
all other subgroups (P < 0.001, Wilcoxon rank-sum test; Sup-
plementary Fig. S7).

We performed survival analysis to determine whether the
prevailing immune response affects the patient survival. None
of the immune cell components or the immune cluster activ-
ities was directly associated with overall patient survival. How-
ever, among samples with a significantly higher macrophage
component than our median GBM reference, high activity of
the "antigen presentation and interferon response” cluster was
associated with prolonged overall patient survival (P = 0.0038,
log-rank test; Fig. 2D) when median cluster activity in the
analyzed cohort was used as threshold. In the same cohort, a
trend toward worse survival was seen with high activity of the
"humoral response and lymphocytes" cluster. The difference
was statistically significant when the cluster activity value 0.060
was used as a threshold (P = 0.035, log-rank test; Fig. 2D)
instead of the median cluster activity (0.099).

GBM cases can be computationally grouped into three
immune response-related subgroups

We performed a k-means-based consensus clustering anal-
ysis for cluster activities to determine whether prevailing
immune responses could identify patient subgroups (Supple-
mentary Fig. S9). This analysis identified three sample groups
that were associated with TCGA transcriptional subtypes (clas-
sification from year 2010, based on whole sample expression,
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ref. 37; and from year 2017, based on the expression in
malignant cells, ref. 24), G-CIMP status, genetic alterations,
cluster activities, and estimated immune cell components
(Fig. 3). The patterns of cluster activities and estimated
immune cell type components indicate that the sample sub-
groups present distinct prevailing adaptive immune responses
in the tumor microenvironment. Sample subgroups were
named as negative (54 samples), humoral (14 samples),
and cellular-like (74 samples) to represent these different
responses (Supplementary Table S7). As an independent val-
idation, similar subgroups were also obtained when consensus
clustering was performed for cluster activities of primary GBM
samples published by Bao and colleagues (Supplementary
Fig. S10; ref. 38).

As illustrated in Fig. 3A, the negative subgroup is enriched by
the proneural subtype and by amplification of CDK4-MARCH9
locus. All G-CIMP-positive and IDHI-mutated samples belong
to this group. High activity of the "negative regulation of
lymphocyte response" cluster is associated with the negative
group as well. The negative group has no other positive associa-
tions to cluster activities or immune cell components (Fig. 3A
and B). The humoral subgroup is associated with higher activ-
ities of the "humoral response and lymphocytes" and "macro-
phages and T-cell response" clusters as well as high B-cell and
CD4" T-cell components (Fig. 3A and B). This group consists
mostly of samples of the mesenchymal subtype (Fig. 3A). The
cellular-like subgroup has a higher activity of the "negative
regulation of T-cell activation, PD-L1" cluster than other sub-
groups, and it is also positively associated with activity of the
"gamma delta T cells" cluster. The cellular-like group is enriched
by the classical subtype and by samples with a high macrophage
component. It also has more samples with EGFR amplification
than the other two groups. Interestingly, some of the alterations,
such as inactivating NF1 mutations/deletions, which were asso-
ciated with estimated immune cell proportions or cluster activ-
ities (Fig. 2C; Supplementary Figs. S6-S7; Supplementary
Table S5), did not show any association with the immune
subgroups, suggesting a linkage to other aspects of immune
microenvironment. Altogether, the consensus clustering provid-
ed a framework for categorizing GBM tumors based on immune
status in the tumor microenvironment and revealed genetic
alterations that are associated with this status.

CD8" cytotoxic T cells recognize and target malignant cells
via MHC-I-mediated antigen presentation on the surface of
the malignant cells (39). As our analysis indicates low adaptive
immune response in the negative subgroup cases, we analyzed
the MHC-I expression in these tumors. All the potential MHC-I
subunit human leukocyte antigens (HLA), namely HLA-A,
HLA-B, and HLA-C, had significantly lower expression in the
negative subgroup than in other subgroups (Supplementary
Fig. S11). A clear difference was also observed, when IDH1-
mutated tumors were compared with other tumors (Fig. 4A). As
IDH mutation is associated with hypermethylator phenotype
(40), we postulated that increased DNA methylation might
drive decreased HLA gene expression in these tumors. Indeed,
HLA genes were significantly more methylated in IDH-mutated
than other tumors (Fig. 4B; Supplementary Table S7). HLA
protein levels were also low in an IDHI1-mutated glioma cell
line, BT142mut, when compared with IDH1 wild-type glioma
cell lines and patient-derived glioblastoma cultures (Supple-
mentary Fig. S12). Furthermore, the expression of HLAs was

Cancer Research

Downloaded from cancerres.aacrjournals.org on October 17, 2020. © 2018 American Association for Cancer Research.


http://cancerres.aacrjournals.org/

Published OnlineFirst June 19, 2018; DOI: 10.1158/0008-5472.CAN-17-3714

Humoral Cellular-like

Negative

I

Computational Analysis of Immune Responses in Glioblastoma

P value

] ]_ [ Transcriptional class, 2010
T [ i Transcriptional class, 2017
I | | [R/G-civP

& e ﬂj

INIEL

Humoral response and lymphocytes
Macrophages and T cell response

Negative regulation of T-cell activation, PD-L1
Antigen presentation and IFN response
Gamma delta T cells

Leukocyte migration

Leukocyte differentiation and chemotaxis

THTTT D TIEE] B _[Tw g Negative regulation of lymphocyte response

ROO
e
eié{z:\
Subtypes G-CIMP Copy number gain Mutations Deletion/mutation P value  Cluster activity
B Classical Positive M Amplification [ Mutated [l Deleted/Mutated M <0.001 1.00
B Neural Negative ~ Gain Nonmutated Neutral | <001 0.50
Proneural NA Neutral NA NA 1 <0.05 ’
Mesenchymal NA >0.05 0.00
B Regression coefficient
028 000 028
Macrophage Granulocyte CD8* T-cell CD4* T-cell B-cell
component component component component component
rkk ke Kkk kkk *xk Kk ok
k. * * . kkk  kkk
- d
2 @ D N @ D @
W\ NN SR
& F F &
TR TR
OQJ )

Figure 3.

Glioblastoma samples can be divided into three subgroups that present distinct immune responses. A, Consensus clustering revealed three subgroups of
samples, which were then associated with genetic alterations, transcriptional class, G-CIMP status, and cluster activities. The negative group (n = 54)
includes all the G-CIMP-positive and /DHI-mutated samples. CDK4 amplification, proneural subtype, and higher activity of the "negative regulation of
lymphocyte response” cluster are associated with the negative group as well. The humoral group (n = 14) is associated with higher cluster activity of the
"humoral response and lymphocytes” and "macrophages and T-cell response” clusters. Most samples in the humoral group are of the mesenchymal
subtype. The cellular-like group (n = 74) is characterized by a higher activity of the "negative regulation of T-cell activation, PD-L1" and "gamma delta
T cells” clusters and by enrichment of EGFR-amplified samples. CDK4-MARCH9 locus: genomic locus containing the CDK4 and MARCH9 genes. The
Wilcoxon rank-sum test was used to estimate the association with immune cluster activities and Fisher exact test for all the other association analyses.
P values for the differences between the subgroups are visualized next to the heat map with a gray scale. B, Tumor samples in three subgroups have
different immune cell type compositions. B-cell and CD4* T-cell compositions are high, and the CD8" T-cell composition is low in the humoral group.
The cellular-like group is enriched by samples with a high macrophage composition. Subgroups were associated with immune cell proportions using

Fisher exact test. *, P < 0.05; **, P < 0.01; ***, P < 0.001.

increased in methyltransferase inhibitor DAC-treated cells
when compared with control-treated cells (Fig. 4C). Our data
show that in the negative group, expression of the HLA com-
ponents of MHC-I is decreased, especially in IDHI-mutated
cells, at least partly due to DNA methylation-driven suppres-
sion of gene expression. This suggests decrease in MHC-I-
mediated antigen presentation in tumors of the negative group.

www.aacrjournals.org

Discussion

Immune therapies have become a promising option for
cancer treatment, which increases the demand for better strat-
ification of the patients based on the function of the immune
system in their tumor microenvironment. When previous
computational studies have analyzed immune system function
in the tumor microenvironment, they have concentrated on
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Figure 4.

DNA methylation suppresses HLA gene expression in /DHI-mutated samples. A, In TCGA GBM cohort, /DHI-mutated samples, and /DHT wild-type samples
with CDK4-MARCH9 locus amplification (CDK4-MARCH9 amp) have lower HLA gene expression than other /DHT wild-type samples (Wilcoxon rank-sum
test). HLA-A, HLA-B, and HLA-C can each act as an MHC-I subunit. B, Methylation level of HLA genes is higher in /DHI-mutated samples compared

with /DHT wild-type samples (Wilcoxon rank-sum test). Representative probes (cg17608381, cg13902357, and cg15397231) are shown in the figure.

C, Methyltransferase inhibition and resulting demethylation results in increased RNA expression of HLA genes in an /DH-mutant glioma cell line BT142mut.
Methyltransferases were inhibited with 5-aza-2'-deoxycytidine (DAC). Fold change of expression values with SD is visualized in the figure.

* P <0.05 **, P<0.01; ***, P < 0.001.

estimating the compositions of immune cells present in the
tumor microenvironment (26, 41). However, these studies
typically lack information on the type of the immune response
associated with the accumulation of the analyzed immune
cells. We have used computational methods to identify the
immune system-related gene signatures across the data set
and estimated the immune cell compositions in the tumor
microenvironment separately for each sample. To our knowl-
edge, we are the first to have integrated the computational
estimation of immune cell compositions to the data-driven
analysis of the immune system-related signatures present in
the tumor microenvironment. We have shown that the TCGA
GBM cohort includes subgroups of samples with different
prevailing immune responses. We have also demonstrated that
the type of immune response is relevant for the disease and
patient survival. These results were largely obtained due to our
approach, which allows combining the information on
immune cell compositions and immune signatures from the
same samples. As TCGA data represent retrospective study,
further prospective studies are needed to fully confirm the
relevance of our findings for patient care and personalized
immunotherapy.

Several studies have shown good performance and utility of
computational methods in estimating the cell type proportions
from the gene expression profile of cell type mixtures or tissue.
Both deterministic and probabilistic modeling approaches
have been successfully implemented (25-27, 41). We decided
to use known reference expression profiles from normal cell
types instead of blind deconvolution. In this case, a straight-
forward way to perform the analysis is to use standard regres-
sion models. We ended up using linear regression with elastic-
net regularization, as the biological data are highly correlated
and the elastic net can work with strongly correlated predictors,
still giving a sparse solution as an output (32). This regular-
ization helps to prevent overfitting and performs variable
selection to output models that show the most significant cell
types for each sample.
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Recently, two publications reported that the IDH mutation is
associated with a decreased number of immune cells in the
glioma tumor microenvironment (22, 23). A decreased number
of immune cells might be due to the dysfunction of leukocyte
migration, as genes that regulate chemotaxis are downregulated
in IDHI1-mutated tumors (22). Consistently, we showed that
IDH1-mutated GBM samples are characterized by low recruit-
ment of CD4" T cells and macrophages, and low activity of
most immune system-related clusters. We also showed that
MHC-I-type HLA genes were both less expressed and more
methylated in IDHI-mutated tumors than in other tumors, and
their expression was also increased when methyltransferases
were inhibited in IDHI-mutated cells (Fig. 4). This suggests
that low immune response in IDH-mutated tumors is at least
partly due to epigenetically decreased MHC-I expression and
thus MHC-I-mediated antigen presentation. Also, samples
with amplification of the CDK4-MARCHY locus were associated
with the negative subgroup, and they typically had fewer CD4"
T cells and macrophages and lower activity of most immune
cell clusters compared with the other samples in our data
(Figs. 2C and 3A). Unlike in the IDHI-mutated tumors, the
decreased immune cell proportions might be caused by down-
regulation or loss of MHC-I proteins from the cell surface as
MARCH)Y has been reported to promote this and lysosomal
destruction of MHC-I (36). IDH mutation is associated with
better prognosis, whereas amplification of CDK4-MARCH9
locus is not associated with prognosis either in the whole GBM
cohort or within the negative subgroup. It is likely that better
survival of IDH-mutated cases is at least partly related to other
aspects of these tumors, such as a better response to radiation
and chemotherapy (42, 43), and not directly caused by a certain
immune system status.

Consensus clustering organized the GBM samples into three
subgroups (negative, humoral, and cellular-like). Several fea-
tures, including genetic alterations, cluster activities, estimated
immune cell proportions, and DNA methylation, significantly
differed between the subgroups (Table 1). The subgroups can
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Table 1. Characteristic features that are enriched in negative, humoral or cellular-like subgroup with different prevailing immune responses

Negative Humoral Cellular-like
Mutations IDH1; ATRX
Amplifications CDK4-MARCH9 locus EGFR gain EGFR amplification
Subtypes G-CIMP; classical (17/54) 31%, Classical (1/14) 7%, mesenchymal (11/14) Classical (43/74) 58%, mesenchymal

mesenchymal (3/54) 6%,
proneural (34/54) 63%
Methylation, high HLA-A; HLA-B; HLA-C

Cell types, high

Cell types, low Macrophage; granulocyte; CD4*
T cell

Immune signature, high Negative regulation of lymphocyte
response?

79%, proneural (2/14) 14%
CD4™ T cell; B cell
CD8" T cell

Humoral response and lymphocytes;
macrophages and T cell response®

(27/74) 37%, proneural (4/74) 5%

Macrophage

Negative regulation of T-cell
activation, PD-LT; antigen
presentation and IFN response®;
gamma delta T cells®

@Activity of all the other clusters is low in the negative group.
PActivity of the cluster is high only in part of the samples.

be considered to represent different lymphocyte responses:
Th2-cell mediated humoral response, Thl-type cellular-like
response, and the absence of either response in the negative
group. Proper Th1-cell and cytotoxic T-cell-mediated response
is needed for proper antitumoral immune response (44), and
the cellular-like subgroup can thus be considered to include
cases where cellular response is partly—but not fully—
induced. This subgroup was associated with higher activity of
"negative regulation of T-cell activation, PD-L1" and "gamma
delta T cells" clusters. PD-L1 is one of the checkpoint regula-
tors that suppress T-cell activation and function (45-47), and
PD-1/PD-L1 interaction has been successfully targeted in sev-
eral malignancies (4, 48-50). None of the studied alterations
was positively associated with the activity of the "negative
regulation of T-cell activation, PD-L1" cluster. PD-L1 is known
to be induced by IFNy (34, 35), and our GBM data support
this, as the cluster also included other IFNy-regulated genes in
addition to PD-L1.

Among genetic alterations included in the association anal-
ysis, only EGFR copy-number status was significantly different
between the humoral and cellular-like subgroups, amplified
cases being enriched in the latter group. This might be due
partly to the low sample number in the humoral subgroup, but
the result also suggests that the most common GBM alterations
are not directing the invoked lymphocyte response to either
cellular or humoral types. On the other hand, the negative
subgroup was enriched by IDH1-mutated and CDK4-MARCH9
locus-amplified cases. Still, the immune microenvironment in
these tumors is determined not solely by the genetic makeup of
malignant cells but also by other factors, including the presence
of the tumor per se, the whole immune system of the individual,
and tumor-immune system interaction. Furthermore, received
medication might also affect the status of the tumor microen-
vironment. The status of the immune microenvironment can
also be dynamic: it originates at least partly from immunoedit-
ing during tumor development and is influenced by changes in
the immune system caused, e.g., by environmental factors and
anticancer treatment. The relative significance of different fac-
tors and ways to modify the immune response should be
determined in the future, e.g., by analyzing the immune cells
in tumor microenvironment and their interaction with malig-
nant cells both in ex vivo and in vivo settings.

The negative subgroup was characterized by low activity of
most immune system-related clusters, but, quite surprisingly,
only the proportion of granulocytes and CD4" T cells was sig-
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nificantly lower in samples in the negative subgroup than samples
in the other two subgroups. On the other hand, high proportion
of any cell type was not typical for this subgroup. Future studies
are needed to evaluate the relative impact of immune cell recruit-
ment or activation to low immune system response in this
subpopulation of GBM cases.

In conclusion, we have analyzed both immune cell composi-
tions and immune responses present in the GBM tumor micro-
environments using computational approaches. By combining
these two different analyses, we have identified three GBM sub-
groups with different prevailing immune responses. Interestingly,
many of the negative group samples contain IDH1 mutation or
MARCHY amplification, which may cause dysregulation of the
immune system in these patients. Future studies are needed to
evaluate whether modulation of MHC-I-mediated antigen pre-
sentation will be a beneficial therapeutic strategy against tumors
in the negative subgroup.
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