
Modelling RISC-V architecture in
Kactus2

System-on-Chip Research Group, Tampere University

CSW Tampere

14th October 2020

15.10.2020 | 2

Biography: Esko Pekkarinen

• Doctoral Researcher at TAU

• Design tools and IP-XACT-based design

• Teaching on System Design and Real-time
Systems

• Kactus2 IP-XACT design tool developer
since 2013

• Previous research topics

• Simulating Wireless Senson Networks (MSc
work)

• Modeling applications on MP-SoCs (BSc
work)

15.10.2020 | 3

Motivation

• RISC-V is a standardized ISA which

• has optional and custom extensions, and

• numerous implementations.

• High abstraction level is mandatory in
modern embedded system design.

• IP reuse

• Multiple configurations

• Automation

• Yet modelling is seen as tedious
compared to traditional HDL-driven design
by the designers

• Legacy code bases difficult to adapt

• Benefits clear only on the long-term

https://www.anandtech.com/show/15231/western-digital-rollsout-two-new-swerv-riscv-cores

https://www.anandtech.com/show/15228/samsung-to-use-riscv-cores

15.10.2020 | 4

https://www.anandtech.com/show/15231/western-digital-rollsout-two-new-swerv-riscv-cores
https://www.anandtech.com/show/15228/samsung-to-use-riscv-cores

Design challenges

HDL level

• HDLs have three aspects mixed
• Behavioral description

• Structural description

• Control for configuration

• Implicit references are evaluated late in the
design flow

• Works fine for small design, but vulnerable to
errors in large projects.

• 100k+ files, multiple vendors, …

• Wrong path/files, conflicts in naming, custom scripts
dependent on file version, …

• Coding style agreements does not seem to help

SoC level

• Abstractions above RTL must be used for design
space exploration

• Multitude of tools, languages and specification
styles

• Different formats (syntax)

• Meaning (semantics)

• Intention (how language or tool is applied)

• Design for deadline often compromises design for
reuse

• Integration of IPs from different vendors is difficult
without any agreed rules for interoperability

• The scale is so large that nobody can comprehend
the whole system in detail

15.10.2020

IEEE 1685-2014 IP-XACT

• Standardized XML format for
• IP-block model, component

• SoC design model

• Integration and configuration flow

• Tool interfaces

• De-facto standard in the
industry

• Vendor, implementation
language and tool independent

• Easy reuse of IPs leads to
better productivity

15.10.2020 | 6

Instantiate

File reference

HDL files

(behavior)

Configure

IP

Tight Generator Interface (TGI)

Kactus2

• Open-source IP-XACT based toolset for
embedded system design

• VHDL and Verilog import

• Generator plugins

• First released in 2011, and has stayed
relevant due to

• standard compatibility,

• graphical user interface, and

• usability.

15.10.2020 | 7

SW Development Documentation

HTML
HDL files

(structure)

Generate

Instantiate

File reference

HDL files

(behavior)

Configure

IP
Import

HDL files

C headers

HW Simulation &

Synthesis

“For our latest project I did the whole toplevel wiring with K2.

Once the database is in place, it’s really impressive how fast thousands

of connections can be done with this tool.

I like it!!!”

PULPino RISC-V microcontroller

• Published open-source

• 68k lines in 250 HDL files

• 21 repositories

• Four core configurations:

• RI5CY: RV32ICM[F] + PULP extensions

• zero-riscy: RV32ICM

• micro-riscy: RV32EC

15.10.2020 | 8

PULPino Datasheet. https://github.com/pulp-

platform/pulpino/blob/master/doc/datasheet/datasheet.pdf

https://github.com/pulp-platform/pulpino/blob/master/doc/datasheet/datasheet.pdf

PULPino IP-XACT modelling

• Component interface imported from source
files

• Ports and parameters

• Behavior kept in original sources

• Sub-module instantiations and connectivity
created manually

• Signal and port grouping to buses and bus
interfaces

• Configuration is done through parameters
and component views.

• The IP-XACT model is available at
https://github.com/kactus2/pulpinoexperiment

• 169 IP-XACT files, 95k lines of XML

15.10.2020 | 9

https://github.com/kactus2/pulpinoexperiment

IP-XACT modelling challenges

15.10.2020 | 10

Conditional structure

• Configuration value
enables/disables part of structure
• Module instantiation

• Wires

• Ports

• Very flexible in HDL

• Inherently IP-XACT structure is
(mostly) static
• isPresent attribute is sufficient

where applicable

• With instances consider creating an
alternate design

`ifndef VERILATOR
apb_uart apb_uart_i (

...
);

`else
apb_uart_sv

#(
.APB_ADDR_WIDTH(3)

)
apb_uart_i
(
...

);
`endif

Snippet from peripherals.sv.

15.10.2020 | 11

Generate loops

•Create regular structure
• Module instantiations

• Wire connections

•Replace with static
instances

generate
genvar i;

for (i = 0; i < APB_NUM_SLAVES; i = i + 1) begin
cluster_clock_gating core_clock_gate
(
.clk_o (clk_int[i]),
.en_i (peripheral_clock_gate_ctrl[i]),
.test_en_i (testmode_i),
.clk_i (clk_i)

);
end

endgenerate

Snippet from peripherals.sv.

15.10.2020 | 12

Coupling structure and behavior

• Glue logic added for simple
manipulation of data as part of
structural description

• Typically multiplexing

• All behavior must be contained
within components

• Move glue logic to new
components

• Impractical for basic ANDs etc.

logic is_boot, is_boot_q;
...
boot_rom_wrap

#(
.DATA_WIDTH (DATA_WIDTH)

)
boot_rom_wrap_i
(
.clk (clk),
.rst_n (rst_n),
.en_i (en_i & is_boot),
.addr_i (addr_i[`ROM_ADDR_WIDTH-1:0]),
.rdata_o (rdata_boot)

);

assign rdata_o = (is_boot_q == 1'b1) ? rdata_boot : rdata_ram;

always_ff @(posedge clk, negedge rst_n)
begin

if (rst_n == 1'b0)
is_boot_q <= 1'b0;

else
is_boot_q <= is_boot;

end

Snippet from instr_ram_wrap.sv

15.10.2020 | 13

Configurable interfaces

• Reusable modules with
configurable interface
• N master and M slave intefaces

• IP-XACT bus interfaces are
statically defined. Options:

1. Define maximum set, leave any
unused unconnected or use
isPresent for limits

2. Automatically generate a
component with correct
number of bus interfaces and
ports from template

`include "axi_bus.sv"

module axi_node_intf_wrap
#(

parameter NB_MASTER = 4,
parameter NB_SLAVE = 4,
parameter AXI_ADDR_WIDTH = 32,
...
)

(
// Clock and Reset
input logic clk,
input logic rst_n,
input logic test_en_i,

AXI_BUS.Slave slave[NB_SLAVE-1:0],

AXI_BUS.Master master[NB_MASTER-1:0],

// Memory map
input logic [NB_MASTER-1:0][AXI_ADDR_WIDTH-1:0] start_addr_i,
input logic [NB_MASTER-1:0][AXI_ADDR_WIDTH-1:0] end_addr_i

);

Snippet from axi_node_intf_wrap.sv

15.10.2020 | 14

Current and future work
• Exploring IP-XACT modeling capability within system-level project

• Targeting for code generation on SoC level

• IP-XACT modeling of PULPissimo microcontroller

• uDMA for better CPU utilization compared to PULPino

• SDIO and camera interface peripherals

15.10.2020 | 15

Conclusion
• Modelling effort benefits from good practices in code and project organization

• Clear and well-defined interfaces

• Decoupling of structure and behavior

• One module per source file

• IP-XACT cannot capture all HDL features

• Modelling work targets for improved

• understandability,

• reusability, and

• productivity.

15.10.2020 | 16

