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Abstract— This paper presents data-driven power iteration to
distributively estimate the dominant eigenvalues of an unknown
linear time-invariant system. The proposed strategy only re-
quires a single trajectory data or measurements. Furthermore,
in order to perform the distributed estimation, the commu-
nication network topology can be chosen to be any strongly
connected directed graphs. The proposed data-driven power
iteration is demonstrated using several numerical examples and
is then applied to estimate the generalized algebraic connectivity
of cooperative systems and to control the epidemic spreading.

Index Terms— Eigenvalue estimation, distributed algorithm,
data-driven, power iteration, strongly connected network.

I. INTRODUCTION

The dominant (rightmost) eigenvalues of a linear (or
linearized) time-invariant (LTI) system play an important
role in the analysis and control of interconnected dynamical
systems. For example, dominant eigenvalues are utilized
in power system’s small signal stability analysis to mon-
itor inter-area oscillation [1]. Furthermore, the dominant
eigenvalue also measures the convergence rate for reaching
consensus among cooperative systems [2], [3].

Power iteration is an effective approach in estimating the
largest (in terms of magnitude) eigenvalue together with the
corresponding right eigenvector of a matrix. In combination
with a deflation technique, it has been widely used to
estimate the dominant eigenvalue in different application
areas including multi-robot systems [2], power system [4],
mechanical engineering systems [5], and epidemic spread-
ing [6]. One of the key features of power iteration which
makes it suitable for analyzing complex systems is its
distributed implementation which follows naturally given that
the matrix of interest has a sparse structure [7], [8].

In spite of its promising applications, knowledge on the
matrix of interest or system model is necessary to perform
the power iteration. However, the system model is often
unknown or not available due to geographical constraint,
privacy issue or simply because it is too complicated to
obtain as observed in power system [9]. This motivates the
development of data-driven approach to estimate the eigen-
values of a LTI system from available data/measurements and
in the absence of model knowledge. However, to the best of
our knowledge it is still not well-understood whether it is
possible to adopt power iteration in order to estimate the
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dominant eigenvalues in the absence of the system model
knowledge while preserving its distributed implementation.

The paper aims at answering the following question: can
the power iteration be used to distributively estimate the
dominant eigenvalues using available data and what is its
limitation? In particular, we build our results based on the
modified model-based power iteration presented in [8] which
allows us to deal with complex dominant eigenvalues. Our
main findings can be summarized as follow: (i) the proposed
data-driven power iteration could estimate the dominant
eigenvalues sequentially until the rightmost complex one. As
one of our contributions we demonstrate that instead of the
left eigenvector which is commonly used in the literature, the
right eigenvector should be used in the deflation technique
to enable data-driven estimation; (ii) the communication
network topology can be chosen to be any strongly connected
directed graphs independent from the physical interconnec-
tion topology. This provides an additional degree-of-freedom
for choosing the communication network topology.

It is worth to note that there exists other alternative
approaches to estimate eigenvalues of an LTI system using
available data, see for example the work in [10]–[13]. How-
ever, those alternative methods suffer from at least one of
the following limitations: (i) data from multiple experiments
or trajectories are required to estimate the eigenvalues; (ii)
the estimation is performed either in a centralized manner or
the communication network topology is restricted to bidirec-
tional network; (iii) the methods are not tailored to estimate
only the dominant eigenvalues and thus extensive storages
and communications are necessary to perform the estimation.
It will be shown in the paper that the proposed data-driven
power iteration can overcome all the above limitations.

The paper is organized as follows. Data-driven dominant
eigenvalues estimation problem is formulated in Section II.
In Section III, a summary of model-based power iteration
is first provided followed by the proposed data-driven power
iteration. The proposed data-driven power iteration is demon-
strated via several numerical examples in Section IV. Con-
cluding remarks and future work are presented in Section V.

II. PROBLEM STATEMENT

In this section, we first provide a brief overview of graph
theory followed by the problem formulation.

A. Preliminaries

Let G = (V, E) be a directed graph (digraph) with a set of
nodes V = {1, 2, · · · , n} and a set of edges E ⊂ V ×V . An
edge (i, j) ∈ E denotes that node i can obtain information
from (or is influenced by) node j. The set of in-neighbors
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Fig. 1: Physically interconnected system with its communica-
tion network topology: the communication network topology
is given by an arbitrary strongly connected digraph indepen-
dent of the physical interconnection topology, i.e., structure
of matrix A in (1)

of node i is denoted by N in
i = {j|(i, j) ∈ E}. The directed

graph G is strongly connected if every node can be reached
from any other nodes by following a set of directed edges.

B. Problem formulation

Consider an interconnected system of q linear time invari-
ant subsystems whose overall dynamics is described by

ẋ = Ax (1)

where A ∈ Rn×n, x = [xT1 , · · · , xTq ]T and xi ∈ Rni

denotes the state of the ith subsystem with n1 + · · · +
nq = n. The eigenvalues of matrix A are denoted by
λ1(A), · · · , λn(A) and ordered by decreasing real part,
i.e. i > j ⇒ <(λi(A)) ≤ <(λj(A)). It is assumed
that all the eigenvalues λi(A) are semi-simple, i.e., the
eigenvectors of A are linearly independent and the state
‖x(t)‖ is bounded, that is <(λ1(A)) ≤ 0. It is worth
noting that in practice the entries of matrix A are unknown,
for example due to privacy issue or simply because it is
too complicated to obtain as can be observed in power
systems [9], [10]. Therefore, in this paper it is assumed
that matrix A is unknown. Each subsystem has access to
the number of subsystems q and its own (noiseless) sampled
state xi(k) , xi(t)|t=kT , (k = 0, 1, · · · ) with T denotes
the sampling time, corresponding to the discrete-time model
of (1) given by

x(k + 1) = Adx(k) (2)

where Ad = eAT . Sampling time T is chosen such that
the above property of eigenvalues of A is preserved for the
eigenvalues of Ad. The subsystems can communicate and
exchange information via a communication network whose
topology is given by a strongly connected digraph G and its
structure is independent of the structure of matrix A, see for
example Fig. 1.

The objective of this paper is to estimate distributively
the dominant (rightmost) eigenvalues of matrix A, that is
eigenvalues located near the imaginary axis (with largest
real-part), using only available single trajectory data xi(k)
for k = 0, 1, · · ·. Power iteration in combination with
deflation technique is a widely used method to distributively

estimate the dominant eigenvalues of a matrix [14]. How-
ever, in general knowledge of system matrix is required to
execute the power iteration. Therefore, in this paper we are
interested in answering the following fundamental question:
Can the power iteration be used to distributively estimate
the dominant eigenvalues of matrix A using available data
and what is its limitation?

III. MAIN RESULT

The relationship between the eigenvalues of matrices A
and Ad is given by

λi(A) =
ln(λi(Ad))

T
(3)

and dynamics (1) and (2) share the same eigenvectors. Since
i > j ⇒ <(λi(A)) ≤ <(λj(A)), eigenvalues of the
discretized dynamics satisfy

|λ1(Ad)| ≥ |λ2(Ad)| ≥ · · · ≥ |λn(Ad)| (4)

where |λi(Ad)| denotes the magnitude of λi(Ad). In this
section, we first provide a summary of model-based power
iteration followed by presenting the main result which is the
data-driven power iteration.

A. Model-based power iteration

If matrix Ad in (2) is known or available, power iter-
ation [14] can be readily applied to estimate λ1(Ad) and
the eigenvalue of interest λ1(A) can then be computed
from (3). However, the output of the standard power iteration
is always a real number which prevents its application when
λ1(Ad) is a complex number. To address this issue, the
work [7], [8] proposed a modified power iteration which
allows distributed computation of a complex eigenvalue.
Here, the communication network topology G is set to be
similar to the sparsity or structure of matrix Ad. In the
following, we make a minor modification and summarize
the distributed algorithm presented in [8], whose analysis
and proof can be found in [8].

1) Each node performs the following iterations

z(1)(k + 1) = Adz
(1)(k) (5)

where z(1) = [(z
(1)
1 )T , · · · , (z(1)q )T ]T . Suppose that

z(1)(0) has a nonzero component in the direction of
wAd

1 , i.e., (z(1)(0))T ·wAd
1 6= 0 where wAd

1 denotes the
right eigenvector corresponding to λ1(Ad).

2) Node i stores the result of three consecutive iterations
z
(1)
` (k), z

(1)
` (k − 1) and z

(1)
` (k − 2) with z

(1)
` ∈ Rn`

and ` ∈ i∪N in
i where N in

i denotes the in-neighbors of
node i.

3) Each node solves for b, d from the
∑
j∈{i∪N in

i }
nj linear

equations

z
(1)
` (k) + bz

(1)
` (k − 1) + dz

(1)
` (k − 2) = 0

4) Each node computes the solutions pi,1(k) and pi,2(k)
to the following quadratic equation

p2i + bpi + d = 0



5) Each node further computes

pi,3(k) =
z
(1)
i,m(k)

z
(1)
i,m(k − 1)

for any m = {1, · · · , ni} where z(1)i,m denotes the m-th
element of vector z(1)i

6) As k → ∞, at least one of the estimates pi,j(k)
converges to λ1(Ad) with j = {1, 2, 3}. Specifically,
• if λ1(Ad) is complex, then (pi,1, pi,2) converge to

(λ1(Ad), λ2(Ad)) where λ2(Ad) is the complex
conjugate of λ1(Ad) while pi,3 does not converge
to any number

• when λ1(Ad) ∈ R and λ2(Ad) is complex, pi,3 then
converges to λ1(Ad) but (pi,1, pi,2) do not converge
to any value

• Finally, when λ1(Ad), λ2(Ad) ∈ R, then (pi,1, pi,2)
converge to (λ1(Ad), λ2(Ad)) or (λ2(Ad), λ1(Ad))
and pi,3 converges to λ1(Ad).

As mentioned previously, the structure of communication
network is similar to the sparsity of matrix Ad in order
for each node to compute (5). Hence, since matrix Ad is a
discretization of original matrix A, the communication graph
G will become fully connected. Next, it will be demonstrated
that the proposed data-driven strategy can overcome this
issue, i.e., it only requires a sparse and strongly connected
digraph which is independent of the structure of matrix Ad.

B. Data-driven power iteration

In the following, we develop a data-driven version of
the algorithms presented in Section III-A. At a first glance,
it seems that the knowledge of matrix Ad is necessary to
compute z(1)(k) from (5) for k = 1, 2, · · · . However, by
setting z(1)(0) = x(0) and noting from dynamics (2) the
relationship between the measurement x(0), x(1), · · · , we
can observe that z(1)(1) in (5) can be written as

z(1)(1) = Adz
(1)(0) = Adx(0) = x(1).

Hence, the power iteration (5) can be embedded into the dy-
namics (2) by choosing properly the starting vector z(1)(0).
In general, z(1)(k + 1) can be written as

z(1)(k + 1) = x(k + 1). (6)

Given that data x(k) is available, it can be seen from (6)
that the matrix Ad is not required to calculate z(1)(k).
Therefore, the communication network topology G can be
chosen to be any strongly connected digraphs so that each
node can distributively execute steps 2–6 in Section III-A.
Suppose that x(0) satisfies (x(0))T ·wAd

1 6= 0, the eigenvalue
λ1(Ad) can be estimated in a distributed manner and the
eigenvalue of interest λ1(A) can then be calculated from (3).
Furthermore, it is known that for a large k, z(1)(k) under (5)
or (6) will converge to wAd

1 when λ1(Ad) ∈ R [14].
Remark 3.1: When iteration number k is large, the state

x(k) may converge to zero which affects performance of the
power iteration. To overcome this, a normalization step is

added in practice. The proposed method can also be applied
to power iteration which includes a normalization as in [7].

Next, let us consider the case where λ1(Ad) ∈ R and
we are interested in developing data-driven algorithm to
distributively estimate λ2(A) after estimating λ1(A) and
wAd

1 . To this end, we consider the following update rule

z(2)(k + 1) = Q1z
(2)(k), (7)

where matrix Q1 is given by

Q1 = Ad − λ1(Ad)wAd
1 (wAd

1 )T (8)

where wAd
1 denotes the right eigenvector corresponding to

λ1(Ad). We then have the following lemma.
Lemma 1: For matrix Q1 defined in (8), we

have λ1(Q1) = 0 and λi(Q1) = λi(Ad) for i = {2, · · · , n}.
Proof: It follows from Adw

Ad
1 = λ1(Ad)w

Ad
1 and

‖wAd
1 ‖ = 1 that

Q1w
Ad
1 = Adw

Ad
1 − λ1(Ad)w

Ad
1 (wAd

1 )TwAd
1 = 0

which implies that 0 is an eigenvalue of Q1 and wAd
1 is the

corresponding eigenvector. In addition, for i = {2, · · · , n},
we can compute

QT
1 ν

Ad
i = AT

d ν
Ad
i − λ1(Ad)w

Ad
1 (w

Ad
1 )T ν

Ad
i

= λi(Ad)ν
Ad
i − λ1(Ad)w

Ad
1 (w

Ad
1 )T ν

Ad
i︸ ︷︷ ︸

=0

= λi(Ad)ν
Ad
i

where νAd
i denotes the left eigenvector of Ad corresponding

to λi(Ad). Hence, for i = {2, · · · , n} eigenvalues λi(Ad) are
also the eigenvalues of Q1 and νAd

i are the corresponding
left eigenvectors, which completes the proof.
Update rule (7) is a power iteration applied to deflated matrix
Ad − λ1(Ad)wAd

1 (wAd
1 )T . One of our contributions is that

in contrast to most of model-based power iteration discussed
in the literature such as the one presented in [7], [8], we
propose to use the right eigenvector wAd

1 instead of the
left eigenvector νAd

1 to define matrix Q1. It will be shown
later that this choice facilitates us and plays a key role in
developing data-driven deflated power iteration.

It can be seen from Lemma 1 and (4) that |λ2(Q)| ≥
|λ3(Q)| ≥ · · · with λi(Q) = λi(Ad) for i = {2, · · · , n}.
Each node can then estimate λ2(Ad) by executing steps 1–6
described in Section III-A and by substituting the iteration
in (5) with (7). Next, similar to update rule (5) we will
demonstrate how each node can compute z(2)(k) under (7)
from sampled data x(k). First, setting z(2)(0) = x(0), we
can write from (7) for z(2)(1) as

z(2)(1) = (Ad − λ1(Ad)wAd
1 (wAd

1 )T )z(2)(0)

= x(1)− λ1(Ad)wAd
1 (wAd

1 )Tx(0).

As can be observed, since each node has estimated
λ1(Ad), w

Ad
1 it can then compute z(2)(1) using sampled data

x(0), x(1). Similarly, by noting that AdwAd
1 = λ1(Ad)w

Ad
1



we can write z(2)(2) as

z(2)(2) = (Ad − λ1(Ad)wAd
1 (wAd

1 )T )z(2)(1)

= Adx(1)− λ1(Ad)AdwAd
1 (wAd

1 )Tx(0)

−λ1(Ad)wAd
1 (wAd

1 )Tx(1)

+λ21(Ad)w
Ad
1 (wAd

1 )TwAd
1 (wAd

1 )Tx(0)

= x(2)− λ1(Ad)wAd
1 (wAd

1 )Tx(1).

In general, we can write (7) as

z(2)(k + 1) = x(k + 1)− λ1(Ad)wAd
1 (wAd

1 )Tx(k). (9)

Hence, from (9) we can see that z(2)(k) under update
rule (7) can be calculated using only available data x(k) and
x(k− 1). Note that for each node to compute z(2)i (k) ∈ Rni

according to (9) in a distributed manner, it needs to be able
to distributively calculate (wAd

1 )Tx(k). To this end, observe
that from discrete-time dynamics x(k + 1) = Adx(k) we
have x(k) → wAd

1 for a large k given that x(0)TwAd
1 6= 0.

Hence, for large value of k node i will know the vector

wAd
i = [wAd

1,(
∑i−1

r=1 nr)+1
, · · · , wAd

1,
∑i

r=1 nr
]T

where wAd
1,i denotes the i-th element of wAd

1 . Next, we can
write (wAd

1 )Tx(k) as

(w
Ad
1 )Tx(k) = q

(∑q
i=1(w

Ad
i )Txi(k)

q

)
= qxave(k). (10)

Each node computes xave(k) using the well-known finite-
time average-consensus algorithm on strongly connected
digraph G, e.g., [15], [16] and by setting the initial value of
its variable to (wAd

i )Txi(k). Therefore, given that each node
knows the total number of nodes q, the term (wAd

1 )Tx(k) can
be calculated in a distributed manner.

Remark 3.2: When the eigenvalue λ1(Ad) is complex,
the iteration (5) or (6) will not converge to wAd

1 . Hence, in
this case it is not possible to apply the deflation technique
to estimate λ2(Ad) and as a result the data-driven power
iteration can only be used to estimate λ1(Ad).

Next, consider the case where λ1(Ad), λ2(Ad) ∈ R. From
previous discussions, the eigenvalues λ1(Ad), λ2(Ad) and
right eigenvector wAd

1 have already been estimated using
available data. Furthermore, since λ2(Ad) = λ2(Q1) ∈ R
the update law (9) will converge to the right eigenvector
corresponding to λ2(Q1), that is wQ1

2 , for a large k. By
using the idea of deflation used to estimate λ2(Ad), we will
show next that λ3(Ad) can also be estimated using available
data. To this end, consider the following update rule

z(3)(k + 1) = Q2z
(3)(k) (11)

where z(3)(k) ∈ Rn and matrix Q2 is given by

Q2 = Q1 − λ2(Q1)w
Q1

2 (wQ1

2 )T . (12)

Using similar argument as in the proof of Lemma 1, it can be
concluded that |λ3(Q2)| ≥ |λ4(Q2)| ≥ · · · , and λi(Q2) =
λi(Q1) = λi(Ad) for i = {3, 4, · · · , n}. Therefore, if
z(3)(k) can be calculated using available data, the eigenvalue

λ3(Ad), respectively λ3(A), can be estimated in a distributed
manner similar to λ1(Ad) and λ2(Ad). Following similar
steps as the estimation of λ2(Ad), from (7), (11) and by
setting initial value z(3)(0) = z(2)(0), we can write z(3)(1)
as

z(3)(1) = [Q1 − λ2(Q1)w
Q1

2 (wQ1

2 )T ]z(3)(0)

= z(2)(1)− λ2(Q1)w
Q1

2 (wQ1

2 )T z(2)(0).

In general, z(3)(k) can be expressed as

z(3)(k + 1) = z(2)(k + 1)− λ2(Ad)w
Q1
2 (wQ1

2 )T z(2)(k).

(13)
Hence, It can be observed from (13) that in order to cal-
culate z(3)(k + 1), the subsystems only need to store the
time-series values of vectors z(2)(k + 1), z(2)(k) calculated
from (9). In general, for j ≥ 2 and λi(A) ∈ R where
i = 1, · · · , j − 1, we can write z(j)(k + 1) as

z(j)(k + 1) =z(j−1)(k + 1)

− λj−1(Ad)w
Qj−2

j−1 (w
Qj−2

j−1 )T z(j−1)(k)
(14)

where w
Qj−2

j−1 denotes the estimated right eigenvec-
tor corresponding to the eigenvalue λj−1(Ad) and
z(j)(0) = z(j−1)(0).

From the above analysis, we can conclude the following
regarding data-driven distributed power iteration developed
in this paper:
• The proposed distributed data-driven power iteration

can be used to sequentially estimate dominant eigen-
values λi(A) for i = 1, · · · until the rightmost complex
eigenvalue (see remark 3.2)

• The data-driven distributed estimation of dominant
eigenvalue λi(A) only requires (needs to store) the
information on z(i−1)(k) (or x(k) when i = 1)

• Estimation of dominant eigenvalues only requires a
single trajectory data x(k) for k = 0, 1, · · ·

• The communication network topology can be chosen to
be any strongly connected digraph.

IV. NUMERICAL EXAMPLES AND APPLICATIONS

In this section, we demonstrate and evaluate the pro-
posed data-driven distributed power iteration using several
numerical examples and applications. For the data-driven
estimation, we set the sampling time T = 0.03s.

A. Interconnected system with reducible physical structure

For the first example, we consider an interconnected
system with q = 3 and ni = 1 for all nodes i. Furthermore,
matrix A (which is unknown to the nodes) in (1) is given by

A = −

[
1 2 0
0 3 1
0 0 4

]
whose physical interconnection topology is shown in Fig. 2a.
Note that the structure of its physical interconnection is
not strongly connected. The eigenvalues of A is given
by λi(A) = {−1,−3,−4}. Each node then applies data-
driven distributed power iteration proposed in the previous



Physical layer Physical layer
(a) (b)

Communication network Communication network

Fig. 2: Structures of physical interconnection and communi-
cation network used in the numerical examples
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Fig. 3: Trajectory of p1,3 computed by node 1 for the
example in Section IV-A

section with T = 0.03 and whose communication network
topology is shown in Fig. 2a to estimate λ1(A) = −1
or λ1(Ad) = 0.9704. As can be observed from Fig. 3, the
value of p1,3(k) converges to λ1(Ad). The other eigenvalues
can also then be estimated from (9), (13).

B. Interconnected system with fully connected subsystems

For the second example, we consider an interconnected
system consisting of four subsystems where q = 4 and ni =
2 for all subsystems. Furthermore, the unknown matrix A is
given by

A =



0 3.14 0 0 0 0 0 0
−0.9 −0.9 0.42 0 0.33 0 0.15 0
0 0 0 3.14 0 0 0 0

0.36 0 −0.9 −0.5 0.3 0 0.24 0
0 0 0 0 0 3.14 0 0

0.15 0 0.15 0 −0.6 −0.8 0.3 0
0 0 0 0 0 0 0 3.14
0.3 0 0.39 0 0.51 0 −1.2 −0.4


whose physical interconnection topology is shown in Fig. 2b.
The rightmost eigenvalues of A are equal to λ1(A) =
0, λ2(A) = −0.2215+2.2119i, λ3(A) = −0.2215−2.1219i
or λ1(Ad) = 1, λ2(Ad) = 0.9914 + 0.0632i, λ3(Ad) =
0.9914 − 0.0632i. The nodes apply data-driven distributed
power iteration in the previous section to distributively
estimate λ2(A) (i.e., λ2(Ad)) after estimating wAd

1 whose
communication network topology is depicted in Fig. 2b. Note
that the communication topology is sparse even though the
physical interconnection structure is fully connected. As can
be observed from Fig. 4, the value of p3,1(k) (computed by
node 3) converges to λ2(Ad) and λ2(A) can be computed
from (3). Since λ2(A) is a complex eigenvalue, the data-
driven power iteration cannot be utilized to estimate λ4(A).

C. Estimation of generalized algebraic connectivity

Let us consider the following consensus dynamics

ẋ = −Lx = Ax
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Fig. 4: Trajectories of p3,1 computed by node 3 for the
example in Section IV-B

where matrix L is a weighted Laplacian matrix whose
structure corresponds to a strongly connected digraph [2].
The consensus dynamics has many applications such as
in robotic network [2] and intelligent transportation sys-
tem [17]. Due to property of the Laplacian matrix, it is
known that λ1(L) = 0 with corresponding right eigenvector
wL1 = 1 and <(λi(L)) > 0 for i 6= 1. Generalized algebraic
connectivity defined by

λ̃(L) = min
λi(L)6=0

<(λi(L))

measures network connectivity and convergence rate for
reaching consensus [3].

A centralized algorithm to estimate λ̃(L) is presented
in [3] given that matrix L is known. If the data x(k) is
available, the proposed data-driven power iteration algorithm
can be used to distributively estimate generalized algebraic
connectivity λ̃(L) without requiring knowledge of matrix
L. To this end, it can be observed that λ2(A) = −λ̃(L).
Since we know that λ1(A) = 0 and wL1 = 1, each node can
then implement data-driven distributed power iteration (9) to
estimate λ2(Ad) and the eigenvalue λ2(A) can be estimated
from (3).

To demonstrate the idea, we consider a network of six
nodes and consensus dynamics similar to the one used in [3]
where matrix A is given by

A =


−2.9 0.1 0.3 0.8 0.9 0.8
0.2 −1.9 1 0.1 0.5 0.1
0.1 0.9 −2.7 0.7 0.9 0.1
1 0.5 0.6 −3.1 0.4 0.6
0 0.2 0.3 0.1 −1.6 1
0.5 0.4 0.6 0.1 0.1 −1.7

 .
Each node executes data-driven power iteration (9) whose
communication network topology is similar to existing com-
munication structure between the nodes (i.e., the structure of
matrix A). An example of estimation at node 5 is shown in
Fig. 5. As can be seen, node 5 could accurately estimate
λ2(Ad). From (3), the generalized algebraic connectivity
λ̃(L) = −λ2(A) is equal to λ̃(L) = 2.1951± 0.4312i (note
that the actual value is λ̃(L) = 2.1916± 0.4313i).



0 100 200 300 400 500 600 700 800

0.974

0.976

0.978

0.98

0 100 200 300 400 500 600 700 800

3

4

5
10

-3

Re(
2
(A

d
))

Im(
2
(A

d
))

Fig. 5: Trajectories of p5,1 computed by node 5 for the
example in Section IV-C

D. Estimation of dominant eigenvector for SIS epidemic
model

Finally, consider a network of q nodes and the susceptible-
infectious-susceptible (SIS) epidemic model [18] given by

x(k + 1) = [(1− δ)I + βP ]x(k) = Adx(k) (15)

where P denotes the adjacency matrix corresponding to the
network which is assumed to be undirected and connected,
parameter δ > 0 is the curing rate on an infected node and
β > 0 is the infection rate on a link connected to an infected
node. Furthermore, the state xi(k) denotes probability that
node i is infected at time-step k. It is known that the largest
eigenvalue of a symmetric adjacency matrix P denoted by
λmax(P ) plays an important role in the dissemination of
disease in a network [18]. In particular, we are interested in
estimating the eigenvector corresponding to λmax(P ), i.e.,
wPmax. The right eigenvector wPmax can be used to develop a
distributed strategy for removing a fraction of links from a
network in order to slow down the spread of disease in the
network, see the discussions in [19] for the details.

The proposed data-driven power iteration can be utilized
to distributively estimate wPmax from available data x(k). To
this end, it can be seen from (15) that wPmax = wAd

1 [20].
Furthermore, since matrix Ad is primitive, the spectral radius
of Ad is equal to λ1(Ad) [19]. Hence, each node can
execute data-driven power iteration in (6) without requiring
the knowledge of parameters β, δ and will converge to wAd

1 ,
i.e., the eigenvector of interest wPmax.

V. CONCLUSION & FUTURE WORK

We propose data-driven power iteration to estimate the
dominant eigenvalues of an unknown linear time-invariant
system in a distributed manner using a single trajectory data.
In particular, the proposed data-driven algorithm estimates
sequentially the dominant eigenvalues until the rightmost
complex one. In order to perform the distributed estimation,
the communication network topology can be chosen to be
any strongly connected directed graphs. This provides an

additional degree-of-freedom for the designer in choosing
or optimizing the communication network topology inde-
pendent from the physical interconnection topology. Future
work include analysis of the proposed algorithm in the
presence of noisy measurements and development of finite-
time algorithm to deal with limited available data.
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