
Distributed Algorithm for Link Removal in
Directed Networks

Azwirman Gusrialdi

Tampere University, Pirkanmaa 33014, Finland
azwirman.gusrialdi@tuni.fi

Abstract. This paper considers the problem of removing a fraction of
links from a strongly connected directed network such that the largest
(in module) eigenvalue of the adjacency matrix corresponding to the net-
work structure is minimized. Due to the complexity of the problem, an
e↵ective and scalable algorithm based on eigenvalue sensitivity analy-
sis is proposed in the literature to compute the suboptimal solution to
the problem. However, the algorithm requires knowledge of the global
network structure and does not preserve strong connectivity of the re-
sulting network. This paper proposes distributed algorithms which allow
distributed implementation of the previously mentioned algorithm by re-
lying solely on local information on the network topology while guaran-
teeing strong connectivity of the resulting network. A numerical example
is provided to demonstrate the proposed distributed algorithm.

Keywords: link removal, strongly connected directed graph, distributed
algorithm, optimization

1 Introduction

It is well-known that the dominant (largest in module) eigenvalue of the so-called
adjacency matrix associated with a network plays an important role in the dis-
semination of an entity such as disease or information in both unidirectional
and bidirectional networks. In other words, it determines whether the dissem-
ination process will become an epidemic [1–5]. While there are several factors
which a↵ect dissemination process of an entity including the intrinsic property
of the entity and the network topology, in this paper we assume that we could
only modify the network structure where the entity spreads on. In particular, we
focus on the problem of removing a fraction of links from a network in order to
contain the dissemination by minimizing dominant eigenvalue of the network’s
adjacency matrix. The removal of links can be interpreted as controlling the
interaction between people or cities in a country in order to slow the spread of
disease when a vaccine is not yet available.

It is known that removing a fraction of links from a network to minimize
the dominant eigenvalue of the adjacency matrix is a NP-hard problem [6]. In
order to address this issue, several works have focused on developing strategies
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to approximate and compute sub-optimal solution to this problem for both uni-
directional and bidirectional networks, see for example [3,6–8]. An e↵ective and
scalable algorithm based on eigenvalue sensitivity analysis is presented in [3] to
minimize dominant eigenvalue of the adjacency matrix by removing some links
from a directed network. Specifically, an optimization problem involving the left
and right eigenvectors corresponding the dominant eigenvalue is formulated to
compute the sub-optimal solution. Note that the previously mentioned work as-
sume that the global network structure is available and known to the designer.
However, in practice the global network structure may not be available or may
be very hard to obtain in a centralized manner due to geographical constraint or
privacy concerns [9, 10]. In addition to the availability of information on global
network structure, the previously mentioned work do not take into account the
(strong) connectivity of the network after the link removal. In some cases, it
is desirable to preserve the (strong) connectivity of a network, for example so
that important information can still be passed to all the users/nodes in the
network or goods can still be transported between cities. Note that in [11], dis-
tributed algorithms which do not require knowledge of global network structure
are proposed to remove a fraction of links from a network while guaranteeing
the connectivity of the resulting network. However, the result is only limited to
the case of bidirectional or undirected network.

The contribution of this paper is the development of distributed algorithms
to compute the sub-optimal solution to link removal problem in a directed net-
work while preserving strong connectivity of the resulting network. Specifically,
matrix perturbation approach proposed in the literature is combined with novel
distributed algorithms to estimate both the left and right dominant eigenvectors
of the adjacency matrix to decide the candidate link to be removed. Further-
more, distributed verification algorithm is proposed to check whether a strongly
connected directed network remains to be strongly connected after removing a
fraction of links. This paper also generalizes the results presented in [11]. The
proposed distributed algorithms can also readily be applied to the link addition
problem whose goal is to maximize dominant eigenvalue of the adjacency matrix.

The organization of this paper is as follows: preliminaries followed by the
problem formulation are presented in Section 2. The proposed distributed al-
gorithms for link removal in directed networks are described in Section 3. A
numerical example to demonstrate the proposed distributed strategy is provided
in Section 4. Finally, Section 5 concludes the paper.

2 Problem Statement

In this section, we first provide a brief overview of graph theory and well-known
results which will be used to develop distributed link removal strategy followed
by the problem formulation.

2.1 Notation and Premilinaries

Let R be the set of real numbers and vector 1n 2 Rn denote the column vector
of all ones. Furthermore, diag(a) 2 Rn⇥n represents the diagonal matrix with
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the elements of vector a 2 Rn on its diagonal. For a given set V, |V| denotes the
number of the elements in this set.

Let G = (V, E) be a directed graph (digraph) with a set of nodes V =
{1, 2, · · · , n} and a set of edges E ⇢ V⇥V. An edge (i, j) 2 E denotes that node i

can obtain information from node j. The set of in-neighbors of node i is denoted
by N in

G,i = {j|(i, j) 2 E}. Similarly, the set of out-neighbors of node i is denoted
by N out

G,i = {j|(j, i) 2 E}. The directed graph G is strongly connected if every
node can be reached from any other nodes by following a set of directed edges.
For a matrix C 2 Rn⇥n

, let [C]i⇤ and [C]⇤i represent vectors whose elements are
equal to the i-th row and column of C respectively. Let us denote the dominant
(i.e., largest in module) eigenvalue of matrix C as �(C). Matrix C 2 Rn⇥n is
irreducible if and only if its associated graph G is strongly connected. The ad-
jacency matrix associated with digraph G, denoted by A(G) 2 Rn⇥n is defined
as

[A(G)]ij =

⇢
1 if i 6= j and (i, j) 2 E ,

0, otherwise

where [A]ij denote the element in the i-th row and j-th column of matrix A.
Matrix C is nonnegative if all its elements are nonnegative. In addition, matrix C

is primitive if it is irreducible and has at least one positive diagonal element [12].
Finally, we review a max-consensus algorithm which is one of the key ele-

ments in the proposed distributed link removal algorithm. Consider a strongly
connected digraph G with n nodes and let us assign state xi(t) 2 R to each node
of G. If each node executes the following max-consensus algorithm [13]

xi(t + 1) = max
j2N in

G,i[{i}
xj(t) (1)

all states xi(t) will then converge to maxi xi(0) in no more than n steps.

2.2 Problem Formulation

Consider an n node network whose connection is given by a (unweighted) strongly
connected directed graph G0 = {V, E0}. From Perron-Frobenius theorem, it can
be observed that �(A(G0)) is real, strictly positive and simple [14]. For the sake
of simplicity, we assume that the nodes know the network’s size n. Otherwise, its
value can be estimated distributively using the methods proposed in the litera-
ture, see for example [15]. Our objective is to remove at most me number of links
�E� from E0 such that dominant eigenvalue of the adjacency matrix of result-
ing graph Gme = {V, E0 \ �E�} is minimized while also guaranteeing that Gme

remains to be strongly connected. The problem can be formally formulated as
the following optimization problem:

min
�E�

�(A(Gme)),

s.t. |�E�|  me,

�E� ✓ E0,

Gme is strongly connected.

(P1)
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Solving optimization (P1) requires global knowledge on the network topology G0.
However, in practice the global network topology G0 is often unknown or not
available due to geographical constraint or privacy reasons such as in social
network. Motivated by this issue, we impose the following constraint for the
remaining of the paper.

Constraint 1 The overall network topology G0 is not available. In addition,
node i can only receive information via a communication network from nodes in
the set N in

G0,i
and knows N out

G0,i
.

The absence of information on the overall network topology makes it im-
possible to solve (P1) in a centralized manner. Furthermore, optimization (P1)
is a combinatorial problem whose complexity increases exponentially with the
network size. Therefore, we are interested in developing a distributed strategy
to compute the suboptimal solution to (P1) as stated in the following problem.

Problem 1. Assume that graph G0 is strongly connected. Find a suboptimal so-
lution or an upper bound to the solution to optimization (P1) under constraint 1.

Remark 1. The local information available to each node as described in Con-
straint 1 is a standard assumption in distributed (cooperative) control literature,
see for example references [16, 17].

3 Main Result

In order to solve Problem 1, we first adopt the strategy based on matrix pertur-
bation theory presented in [3,11]. Using matrix perturbation theory, for a graph
with a large spectral gap (i.e., di↵erence between the largest and second largest
eigenvalue in magnitude) we can write

�(A(Gme)) = �(A(G0)) �
⌫
T
0 �A

�
w0

⌫T
0 w0

+ O(k�A
�k2) (2)

where �A
� denotes the adjacency matrix corresponding to the graph whose links

are given by �E�. Moreover, ⌫0, w0 are the dominant left and right eigenvectors
corresponding to �(A(G0)), respectively. Due to the large spectral gap, we can
neglect the higher order term in (2) and thus minimizing �(A(Gme)) is equivalent
to maximizing ⌫

T
0 �A

�
w0/(⌫T

0 w0). Defining the labeling `G0 2 {1, · · · , |E0|} on

the edges of graph G0, matrix �A
� can be written as �A

� =
P|E0|

`G0=1 y`G0
A`G0

where A`G0
is a matrix with all zeros entries except for the ijth entry corre-

sponding to the edge of label `G0 which is equal to 1. Furthermore, y`G0
2 {0, 1}

where y`G0
= 1 means that the edge `G0 in E0 is removed. Problem 1 can then

be formulated as the following optimization problem

max
y

1

⌫T
0 w0

|E0|X

`G0
=1

y`G0
⌫0,iw0,j

s.t. Gme is strongly connected,

1T
|E0|y  me,

y 2 {0, 1}|E0|

(P2)
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where ⌫0,i and w0,i respectively denotes the i-th element of left eigenvector ⌫0

and w0 associated with �(A(G0)). In addition, the vector y = [y1, · · · , y|E0|]
T .

The analysis of optimality gap between the solutions obtained by solving (P2)
and (P1) is discussed in [3]. In order to solve (P2), Note that ⌫0, w0 cannot
be directly computed and whether graph Gme is strongly connected cannot be
directly checked since the global network topology G0 is not available.

Next, we present distributed algorithms performed at each node, given that
the nodes have local computational capability, to solve (P2) under constraint 1.
To this end, we first define a primitive matrix Q0 given by

Q0 = In + A(G0) (3)

where In = diag(1n). Since matrix Q0 is primitive, it is known that there ex-
ists a real dominant and simple eigenvalue of Q0, denoted by �(Q0) satisfy-
ing �(Q0) > |µ| for all other eigenvalues µ of Q0 [14]. Hence, we have the
following relationship: �(Q0) = 1 + �(A(G0)). It can also be observed that both
matrices Q0 and A(G0) share the same set of left and right eigenvectors (i.e.,
⌫0, w0) which are both positive, up to rescaling [14].

3.1 Distributed Estimation of Dominant Right Eigenvector w0

In this subsection we utilize power iteration method to estimate w0 in a dis-
tributed manner. Specifically, each node performs the following iterations [18]:

ŵ0,i(t + 1) =
1

kQ0ŵ0(t)k1

X

j2{N in
G0,i[i}

[Q0]ijŵ0,j(t) (4)

where ŵ0,i(t) denotes the local estimation of w0,i at the t-th iteration. Note
that since w0 > 0, each node can choose any initial condition ŵ0,i > 0. Fur-
thermore, since the graph is strongly connected, it is guaranteed that under
update law (4) local estimate ŵ0,i(t) will asymptotically converge to w0,i for all
nodes i. Note that by using max-consensus algorithm (1) and by setting xi(0) =P

j2{N in
G0,i[i}[Q0]ijŵ0,j(t), each node will be able to compute kQ0ŵ0(t)k1 in a

distributed manner. Therefore, update law (4) can then be implemented dis-
tributively by each node in the network. The nodes can implement the stopping
criteria kŵ0(t)� ŵ0(t� 1)k1 < ✏ for a su�ciently small pre-defined threshold ✏

(to guarantee the estimation accuracy) which can also be checked in a distributed
manner using max-consensus algorithm.

Remark 2. The normalization in (4) is performed to prevent the nonzero compo-
nents in the iteration from becoming extremely large when |�| > 1 or approach-
ing zero if |�| < 1. Hence, the normalization can be performed intermittently
(which can be agreed by the nodes in advance before implementing the algo-
rithm) since it has no e↵ects on the convergence of power iteration method [19].
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3.2 Distributed Estimation of Dominant Left Eigenvector ⌫0

After estimating distributively the dominant right eigenvector w0, the next step
is to estimate the dominant left eigenvector ⌫0 in a distributed manner. In con-
trast to the dominant right eigenvector, the distributed estimation of dominant
left eigenvector has received less attention in the literature. To this end, we
depart from the following relationship

Q
T
0 ⌫0 = �(Q0)⌫0, (5)

where Q
T
0 denotes the transpose of matrix Q0. Each node can then distributively

estimate ⌫0 by solving (5) in a distributed fashion. First, observe that after
estimating w0,i and from Q0w0 = �(Q0)w0, node i can estimate �(Q0) according
to

�(Q0) =
[Q0]Ti⇤ŵ0

ŵ0,i
. (6)

Next, since node i knows N out
G0,i

it can construct the vector [Q0]⇤i or [QT
0 ]i⇤. In

addition, after estimating �(Q0) from (6), each node then estimates ⌫0 by solving
distributively a set of linear equations (5) which can be rewritten as

(QT
0 � �(Q0)In| {z }

Q0

)⌫0 = 0. (7)

Specifically, the nodes cooperatively estimate ⌫0 by performing the following
iterations [20]:

⌫̂i
0(t+ 1) = ⌫̂i

0(t)� Pi

0

B@⌫̂i
0(t)�

1

|N in
G0,i

|
X

j2N in
G0,i

⌫̂j
0(t)

1

CA (8)

ofwhere ⌫̂
i
0(t) denotes the local estimation of ⌫0 at node i at the t-th iteration

and matrix Pi is defined as

Pi = In � [Q0]i⇤([Q0]
T
i⇤[Q0]i⇤)

�1[Q0]
T
i⇤

which depends on local information of node i and Q0 is defined in (7). It should
be noted that in general the set of linear equations (7) has many solutions. In
order for local estimation ⌫̂

i
0 for i = {1, · · · , n} to converge to the same solution

to (7), the initial condition of each node ⌫̂
i
0(0) is chosen to minimize

1

2
|⌫̂i

0(0) � b|2 s.t. [Q0]
T
i⇤⌫̂

i
0(0) = 0 (9)

for arbitrary vector b > 0 with |·| denotes the Euclidean norm. It is shown in [20]
that under update law (8) whose initial conditions are chosen to minimize (9), all
the nodes estimation ⌫̂

i
0 converge exponentially fast to the solution to (7) which

is also the solution to: minQ0⌫0=0
1
2 |⌫0 � b|2. The settling time of update law (8)

can be calculated similar to the calculation in [21]. Note that update law (8)
utilizes the same communication network G0 as the one utilized to distributively
estimate w0. Furthermore, in contrast to the estimation of w0 presented in the
previous subsection, node i will obtain the estimation of the full vector ⌫0 instead
of the i-th element ⌫0,i.
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Remark 3. In comparison to distributed algorithm for estimating left and right
eigenvectors corresponding to any irreducible matrices presented in [21] which
requires each node to use memory O(n2) and to send n

2 values to its neighbors,
the proposed distributed algorithm only requires to use memory O(n) and to
send n values to its neighbors. In addition, applying distributed estimation al-
gorithms in [21] will reveal the global network structure to all nodes which may
violate the privacy of each node. In contrast to [21], the proposed distributed
algorithm respects the privacy in terms of the global network topology.

3.3 Distributed Verification of Digraph’s Strong Connectivity

Let us assume that we remove a link (i⇤, j⇤) 2 E0 from a strongly connected
digraph G0. In this subsection we present a distributed algorithm based on max-
consensus protocol to verify whether the resulting network G1 = {V, E0\(i⇤, j⇤)}
remains to be strongly connected. To this end, each node is assigned a new
variable xi(t) 2 R whose initial value is first set to xi(0) = 0, i = {1, · · · , n}.
Given a candidate link to be removed (i⇤, j⇤), node j

⇤ then modifies its initial
value into xj⇤(0) = 1 while the remaining nodes do not change their initial
values. All the nodes then execute max-consensus protocol (1) on the graph G1 =
{V, E0\(i⇤, j⇤)}, that is node i

⇤ does not use the information it received from
node j

⇤ (or node j
⇤ does not send its information to node i

⇤) when executing
the update law (1). We then have the following result on the relation between
the final values of xi(t) and the strong connectivity of graph G1.

Lemma 1. Given a strongly connected digraph G0 and a link (i⇤, j⇤) 2 E0.
Moreover, each node executes max-consensus protocol (1) on the graph G1 =
{V, E0\(i⇤, j⇤)} with initial values xj⇤(0) = 1 and xm(0) = 0 for all m 6= j

⇤. The
graph G1 = {V, E0\(i⇤, j⇤)} is strongly connected if and only if xi(n) = 1 for all
i 2 V.

Proof. For showing the necessity (=)), since the graph G1 = {V, E0\(i⇤, j⇤)} is
strongly connected, it is shown in [13] that under max-consensus protocol (1)
all nodes will converge to maxi xi(0) which is equal to 1. Next, we show the
su�ciency ((=). To do this note that the graph G0 is strongly connected. The
removal of link (i⇤, j⇤) thus may result in that there exists no direct or indirect
path from node j

⇤ to node i
⇤. However, since we have xi(n) = 1 under update

law (1) for all nodes i in the network, this means that there is at least an indi-
rect path from nodes j

⇤ to i
⇤. Hence, the resulting graph G1 = {V, E0\(i⇤, j⇤)}

remains to be strongly connected which completes the proof.

Remark 4. For the result in Lemma 1 to hold it requires the graph G0 to be
strongly connected. In other words, the resulting graph G1 = {V, E0\(i⇤, j⇤)}
may not be necessarily strongly connected even though xi(n) = 1 for all i 2 V if
the graph G0 is not strongly connected.

Remark 5. In contrast to the case of undirected network presented in [11], in
the case of directed network the initial values in (1) cannot be chosen randomly
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1 2

34

1 2

34

x1(0) = 0 x2(0) = 1

x3(0) = 0x4(0) = 0

x1(0) = 1 x2(0) = 0

x3(0) = 0x4(0) = 0

(a) (b)

Fig. 1: Each node executes max-consensus protocol (1) on the graph G1 =
{V, E0\(2, 1)}. (a) the graph G1 is not strongly connected even though xi(n) = 1
for all nodes i when x2(0) = 1 and x1(0) = 0; (b) graph G1 is not strongly
connected since xi(n) = 0 for all nodes i 6= 1 when x1(0) = 1 and x2(0) = 0

between nodes i
⇤ and j

⇤ in order to check whether the resulting network is still
strongly connected as illustrated in Fig. 1.

After each node executes update law (1) for n iterations with initial values
described in Lemma 1, node i

⇤ then checks whether xi⇤(n) = 1. If xi⇤(n) = 1,
it needs to notify node j

⇤ that the network remains to be strongly connected in
the removal of link (i⇤, j⇤). To this end, each node is assigned with additional
scalar variable fi(t). If the graph G1 is strongly connected (resp. not strongly
connected), the initial values of fi are set to fi⇤(0) = 1 (resp. fi⇤(0) = �1)
and fm(0) = 0 for all m 6= i

⇤. The nodes then again execute (1) on graph G0

with the previously described fi(0) and after n iterations, node j
⇤ checks if

xj⇤(n) = 1 (resp. xj⇤(n) = 0) then it will know that the the graph G1 remains to
be strongly connected (resp. will not be strongly connected) after the removal
of the link (i⇤, j⇤).

The strong connectivity of the resulting graph after removal of multiple links
can then be distributively checked by iteratively applying the result in Lemma 1.

3.4 The Complete Distributed Link Removal Algorithm

After describing key elements required to develop the distributed algorithm,
the pseudo-code of the complete distributed link removal algorithm to solve
optimization problem (P2) is summarized in Algorithm 1.

Note that in steps 6 and 7 of Algorithm 1 it is assumed that the final esti-
mation of left and right eigenvectors ⌫0, w0 have been normalized. For the left
eigenvector ⌫0, since each node has the estimation of the vector ⌫0, i.e., ⌫̂

i
0, it

can then normalize the estimation ⌫̂
i
0 independently. On the other hand, since

node i only has the estimation of the i-th element of right eigenvector w0, it then
needs to normalize ŵ0 cooperatively with the rest of the nodes. To this end, the

norm kŵ0k defined as kŵ0k =
q

ŵ2
0,1 + · · · + ŵ2

0,n can also be written as

kŵ0k =

vuutn

 
ŵ2

0,1 + · · · + ŵ2
0,n

n

!
=
p

nŵave
0 .
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Algorithm 1 Distributed algorithm to solve optimization problem (P2)

Require: G0 is strongly connected connected, node j can receive information
from N in

G0,j and knows N out
G0,j , n, me

1: y = [0, · · · , 0]T 2 R|E0|

2: node j estimate w0,j using (4) whose estimation is given by ŵ0,j

3: node j estimate the vector ⌫p using (8) whose estimation is given by ⌫̂j
p

4: initialize p = 0
5: while p  me � 1 do
6: node j independently computes (ic, j) = argmax ⌫̂j

0,iŵ0,j for i 2 N out
Gp,j

7: all nodes compute (i⇤, j⇤) = argmax ⌫̂i
0,ic ŵ0,j with (ic, j) obtained in the previous

step using max-consensus (1) with xj(0) = ⌫̂j
0,ic ŵ0,j

8: check strong connectivity of Gp+1 = (V, Ep \ (i⇤, j⇤)) using distributed algorithm
described in Subsection 3.3

9: if Gp+1 is not strongly connected then
10: back to steps 6–8 where node j⇤ excludes the link (i⇤, j⇤) when solving the

optimization problem in step 6
11: if N out

Gp,i = ; for all i then
12: break
13: end if
14: else
15: continue to step 17
16: end if
17: p p+ 1
18: update Gp = {V, Ep�1 \ (i⇤, j⇤)}
19: y`⇤G0

= 1 where `⇤G0
⇠ (i⇤, j⇤)

20: end while

If the nodes can compute ŵ
ave
0 distributively and given that they know n, each

node can then compute kŵ0k. Specifically, the nodes can compute ŵ
ave
0 in a

distributed manner using the finite-time average consensus algorithm proposed
in the literature, e.g., [16] by setting its initial value as ŵ

2
0,i.

4 An Illustrative Example

In this section, we demonstrate the proposed distributed algorithm to compute
solution to Problem 1. Consider a strongly connected digraph G0 consisting
of eight nodes shown in Fig. 2 where each node may represent for example a
city/state or a person. The number of links to be removed me is varied between
1 and 4. We choose a small size network so that the comparison with the central-
ized brute-force search approach, which in general is NP-hard, becomes possible.
Interested reader is referred to the simulation results in [3] for the performance
evaluation of solution to optimization problem (P2), without connectivity con-
straint, on real large graphs.

We apply Algorithm 1 to find solution to optimization problem (P2) for
each me. As illustrated in Fig. 3a, the estimation ŵ0,i converges in less than 20
time steps to the true (unnormalized) right eigenvector w0,i. Next, each node
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67

58

4

32

1

Fig. 2: A strongly connected directed graph used in the simulation

0 5 10 15 20 25 30

time step

0

0.2

0.4

0.6

0.8

1

1.2

true right eigenvector

0 50 100 150 200 250 300

time step

0.2

0.4

0.6

0.8

1

1.2

1.4

true dominant left eigenvector

Fig. 3: (a) Estimated right eigenvector ŵ0,i corresponding to �(Q0) with Q0 =
A(G0)+In by each node (denoted by the markers) using power iteration method
in (4). The estimation converge in less than 20 time steps; (b) Estimation of left
eigenvector ⌫0 corresponding to �(Q0) by node 1 (i.e., ⌫̂

1
0)

distributively estimates the left eigenvector ⌫0 using update law (8). Fig. 3b de-
picts the left eigenvector estimation of A(G0) by node 1. As can be observed, the
local estimation by each node converges to the true (unnormalized) left eigen-
vector ⌫0. After estimating the eigenvectors (and normalizing them), the nodes
then compute the candidate edge to be removed and check the strong connectiv-
ity of resulting graph. For comparison, we modify Algorithm 1 to iteratively and
distributively remove one link at a time, that is after removing a link from the
network we re-estimate the dominant left and right eigenvectors corresponding
to the resulting network and compute the next link to be removed based on the
new estimated dominant eigenvectors. In addition, to evaluate the optimality
gap between the suboptimal and the global optimal solutions we also solve the
original optimization problem (P1) by performing a brute-force search for each
me and assuming that the global network topology is available.

The results are summarized in Table 1. First, it can be observed that for
me = 1 the solutions to (P1) and (P2) are the same, i.e., the optimality gap
is equal to zero. For the case of me = 2, 3, 4 there is a gap between the val-
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Table 1: Comparison of solution using di↵erent strategies

me
Algorithm 1 Iterative link removal Brute-force search

Optimization (P2) Optimization (P2) Optimization (P1)
�E� �(A(Gme)) �E� �(A(Gme)) �E� �(A(Gme))

1 (5,4) 2.5209 (5,4) 2.5209 (5,4) 2.5209
2 (5,4), (6,5) 2.3717 (5,4), (6,3) 2.2426 (5,4), (6,3) 2.2426

3
(5,4), (6,5)

2.0826
(5,4), (6,3)

2.0295
(2,1), (6,3)

2.0135
(6,3) (2,1) (6,5)

4
(5,4), (6,5)

1.9728
(5,4), (6,3)

1.8216
(5,1), (6,3)

1.8111
(6,3), (1,5) (2,1), (6,5) (5,4), (2,7)

ues of �(A(Gme)) corresponding to the solution obtained from Algorithm 1 and
by applying brute-force search. However, the gap could be made smaller if we
iteratively remove one link at a time for each me. In fact, when me = 2 the opti-
mality gap between iterative link removal and brute force search is equal to zero,
i.e., there is no performance loss in spite of the absence of the global network
topology. Intuitively, one of the reasons is because when we remove iteratively
one link at a time, the matrix perturbation �A

� in (2) is su�ciently small so
that the term ⌫

T
p �A

�
wp/(⌫T

p wp) at iteration p could predict the movement of
eigenvalue �(A(Gp)) when it is perturbed by �A

�.

5 Conclusion

This paper proposes eigenvalue sensitivity based distributed algorithm to remove
a fraction of links from a strongly connected directed network such that dominant
eigenvalue of the adjacency matrix is minimized. In addition, the algorithm also
guarantees that the resulting network remains to be strongly connected after
the link removals. The proposed distributed algorithms consist of distributed
estimation of both left and right eigenvectors corresponding to the largest (in
module) eigenvalue of the adjacency matrix together with distributed verification
algorithm to check whether a network is strongly connected after removal of a
link. A numerical example demonstrates the implementation and e�cacy of the
proposed distributed algorithm.
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