

Towards a virtual campus in engineering mathematics

Simo Ali-Löytty, Riikka Kangaslampi and Valtteri Pinkkilä

ECMI 2021

Joint work with

Technology supported mathematics education research group

Simo Ali-Löytty

Jani Hirvonen

Terhi Kaarakka

Jussi Kangas

Riikka Kangaslampi

Valtteri Pinkkilä

Johanna Rämö

Elina Viro

... any many other teachers, teaching assistants, collaborators - and students!

Vectors and matrices

Engineering mathematics at Tampere University

Four mandatory courses, 5 credits each:

- Fundamentals of engineering mathematics
- Vectors and matrices
- Differential and integral calculus
- Introduction to probability and statistical inference

"Flipped" implementations for about 300 students yearly, another 300-400 students study the courses more traditionally.

Vectors and matrices

- Students from three Tampere University campuses & FiTech Network University
 - FiTech is collaborative project of seven Finnish universities of technology that offer university courses free of charge to degree students and adult learners (graduates and company representatives)
- Teaching based on flipped learning ideology: online learning platform, written material, lots of small problems to work on, videos, discussion forum, problem sessions (online), small group meetings with teacher (online)
- Weight of continuous assessment 70-85%, final exam 15-30%
 - Students collect points from online problems, written solutions to homework, self- and peer-assessments, learning portfolio / group work, and final exam

Vectors and matrices: self-study phase

Students study each week a new topic with provided online material:

- Course notes with theory, examples and problems
- STACK problem set (automatically assessed, randomised problems)
- Short videos

Pohdi 3.1.1

Ruska ja Tuisku ovat lähdössä ruokaostoksille ja vertailevat hintoja kahdessa lähikaupassaan. Alla olevassa taulukossa on heidän kauppalistansa sekä ruokatavaroiden hinnat eri kaupoissa:

	maitoja	sämpylöitä	jogurtteja
Ruska	6	4	4
Tuisku	6	2	3

	Y-kauppa	T-valinta
maito	1,40 e	1,30 e
sämpylä	1,10 e	1,15 e
jogurtti	0,50 e	0,60 e

- 1. Kuinka monta jogurttia Tuisku aikoo ostaa?
- 2. Mitä kaikkea Ruska on ostamassa ja kuinka paljon?
- 3. Mitkä ovat tuotteiden hinnat T-valinnassa?

Kuten Ruskan ja Tuiskun tapauksesta nähdään toisinaan asiat on kätevä kirjoittaa muistiin taulukkoon. Matematiikassa lukutaulukkoja kutsutaan matriiseiksi. Esimerkiksi Ruskan ja Tuiskun kauppalistan voi kirjoittaa matriisina

$$A = \left[egin{matrix} 6 & 4 & 4 \ 6 & 2 & 3 \end{matrix}
ight]$$

ja ruokatavaroiden hinnat matriisiksi

$$B = \begin{bmatrix} 1,40 & 1,30 \\ 1,10 & 1,15 \\ 0,50 & 0,60 \end{bmatrix}.$$

About STACK

- STACK (System for Teaching and Assessment using a Computer algebra Kernel) is an online assessment system for mathematics and STEM, designed to enable students to answer questions with a mathematical expression, such as a polynomial. It is available for Moodle.
- STACK uses the Computer Algebra System Maxima to evaluate expressions which enables for example randomised questions and specific feedback
- https://stack-assessment.org/

Vectors and matrices: self-study phase

- Each learning week, the students had about 15 STACK problems to solve
- The idea of STACK problems was not only to test the students' knowledge but also to support their learning process and deepen their understanding

Vectors and matrices: Online exercise activity

Vectors and matrices: group study phase

Problem sessions

- Several small groups and teaching assistant(s)
- Students discuss solutions to preproblems and work together on homework problems

Prime time meetings

- One small group (5-8 students) and teacher
- Discussion on the week's topics
- Group solves a few harder problems together

Vectors and matrices: final exam

- The final exam was open book remote Moodle exam
- In the exam there were STACK questions and questions which required PDF attachment
- The exam was open for one week but the time limit was 3 hours
- Before of Covid-19 we had closed book exams in computer labs where we also used STACK questions and students had MATLAB available

Vectors and matrices: final exam

Teaching and learning mathematical modelling on the Web

Finnish Network on Mathematical Modelling

- The purpose of the network is to develop Web-based learning and teaching methods in mathematical modelling.
- Cross-national, participating universities
 - Tampere University,
 - Aalto University,
 - University of Eastern Finland,
 - University of Jyväskylä,
 - Lappeenranta University of Technology and
 - University of Oulu
- Basic course on mathematical modelling (5 cr) is the most popular course
 - Fully online since 2002. From 2002 to 2020, in total, 1570 students have completed the courses
 - Contains 8 moduls and project work. Each two-week modul is based on videos by experts, practise problems and group work.
- Two advenced level courses
 - Advanced mathematical modelling: Continuous models (5 cr)
 - Advanced mathematical modelling: Discrete modelling (5 cr)

https://www.youtube.com/channel/UC9gZ4VrQQlaYd-irZATtPRQ/videos https://webpages.tuni.fi/matemaattinenmallinnus/coursework-examples/

Thanks!

