Tampere University

Using STACK on flipped math courses

Simo Ali-Löytty, Riikka Kangaslampi and Valtteri Pinkkilä

International Meeting of the STACK Community 2021

Joint work with

Technology supported mathematics education research group

Simo Ali-Löytty

Jani Hirvonen

Terhi Kaarakka

... any many other teachers, teaching assistants, collaborators - and students!

Valtteri Pinkkilä

Johanna Rämö

Elina Viro

Vikke Vuorenpää

Riikka Kangaslampi

Engineering mathematics at Tampere University

Four mandatory courses, 5 credits each:

- Fundamentals of engineering mathematics
- Vectors and matrices
- Differential and integral calculus
- Introduction to probability and statistical inference

"Flipped" implementations for about 300 students yearly, another 300-400 students study the courses more traditionally.

Vectors and matrices

Vectors and matrices

- Students from three Tampere University campuses & FiTech Network University
 - FiTech is collaborative project of seven Finnish universities of technology that offer university courses free of charge to degree students and adult learners (graduates and company representatives)
- Teaching based on flipped learning ideology: online learning platform, written material, lots of small problems to work on, videos, discussion forum, problem sessions, small group meetings with teacher
- Weight of continuous assessment 70-85%, final exam 15-30%
 - Students collect points from online problems, written solutions to homework, self- and peer-assessments, learning portfolio / group work, and final exam

Vectors and matrices: self-study phase

Students study each week a new topic with provided online material:

- Course notes with theory, examples and problems
- STACK problem set, linked with theory
- Short videos

Pisteet 0/1	Palautukseni 0/5 ▼ Määräaika tiistai 1.6.2021 22:00			
Tehtävä 1				
Kysymys 1				
1 piste Valitse	paikkansa pitävät väittämät. Oletetaan, että $A,B\in\mathbb{R}^{m imes n}$ ja että $\mathbf{b}\in\mathbb{R}^m\setminus\{0\}.$			
\square Jos ${f s}$ on matriisiyhtälön $A{f x}={f 0}$ ratkaisu, niin myös $2{f s}$ on ratkaisu.				
$oxed$ Jos ${f s}$ on matriisiyhtälön $A{f x}={f b}$ ratkaisu, niin myös $2{f s}$ on ratkaisu.				
\square Jos A on matriisi ja $A\mathbf{x}=O$ kaikilla vektoreilla \mathbf{x} , niin $A=O$ on nollamatriisi.				
\square Jos $AB=O$,	niin $A=O$ tai $B=O$.			
\square Jos A ja B ova	t neliömatriiseja, niin $(A+B)^2=A^2+2AB+B^2.$			
Lähetä				

Pohdi 3.1.1

Ruska ja Tuisku ovat lähdössä ruokaostoksille ja vertailevat hintoja kahdessa lähikaupassaan. Alla olevassa taulukossa on heidän kauppalistansa sekä ruokatavaroiden hinnat eri kaupoissa:

	maitoja	sämpylöitä	jogurtteja
Ruska	6	4	4
Tuisku	6	2	3

	Y-kauppa	T-valinta
maito	1,40 e	1,30 e
sämpylä	1,10 e	1,15 e
jogurtti	0,50 e	0,60 e

- 1. Kuinka monta jogurttia Tuisku aikoo ostaa?
- 2. Mitä kaikkea Ruska on ostamassa ja kuinka paljon?
- 3. Mitkä ovat tuotteiden hinnat T-valinnassa?

Kuten Ruskan ja Tuiskun tapauksesta nähdään toisinaan asiat on kätevä kirjoittaa muistiin taulukkoon. Matematiikassa lukutaulukkoja kutsutaan matriiseiksi. Esimerkiksi Ruskan ja Tuiskun kauppalistan voi kirjoittaa matriisina

$$A = \begin{bmatrix} 6 & 4 & 4 \\ 6 & 2 & 3 \end{bmatrix}$$

ia ruokatavaroiden hinnat matriisiksi

$$B = \begin{bmatrix} 1,40 & 1,30 \\ 1,10 & 1,15 \\ 0,50 & 0,60 \end{bmatrix}$$

Vectors and matrices: self-study phase

- Each learning week, the students had about 15 STACK problems to solve
- The idea of STACK problems was not only to test the students' knowledge but also to support their learning process and deepen their understanding

Vectors and matrices: self-study phase

- Wide variety of different STACK questions
 - MCQ
 - JSXGraph questions
 - Questions where students use MATLAB to find solution
 - Etc.

Vectors and matrices: Online exercise activity

Vectors and matrices: group study phase

Problem sessions

- Several small groups and teaching assistant(s)
- Students discuss solutions to preproblems and work together on homework problems

Prime time meetings

- One small group (5-8 students) and teacher
- Discussion on the week's topics
- Group solves a few harder problems together

Vectors and matrices: final exam

- The final exam was open book remote Moodle exam
- In the exam there were STACK questions, multichoice questions and two questions which required PDF attachment
- The exam was open for one week but the time limit was 3 hours
- Before Covid-19 we had closed book exams in computer labs where we also used STACK questions and students had MATLAB available

Mean points (0-100) for all four questions: Multichoice, Stack, MLS and Diagonalization

- For Minimum Least Squares and Diagonalization questions students wrote solutions in pdf format with Matlab's Live Editor
- On the last day, all points dropped except for the Stack questions

Some effects of flipping

Benefits from flipping: SAL

Changes in students' approaches to learning mathematics during first year engineering mathematics courses are more positive on flipped courses:

- Before pandemic, the values for deep and organized approach increase, whereas in the non-flipped model those values decrease.
- After pandemic, students on flipped courses maintain higher values for deep and organized approach.

Benefits from flipping: BPNS

Students' satisfaction of basic psychological needs (autonomy, competence and relatedness) is higher on flipped courses.

Benefits from flipping: SE

On flipped courses, the students' self efficate starts to increase after an initial drop.

Pandemic causes (again) a dramatic effect.

Summary

Flipping math courses has a lot of positive effects.

Flipping mass courses would be very difficult without STACK.

- Carefully planned set of STACK problems on each topic help the students in self-study phase to understand the concepts.
- After working on STACK problems, the students are more able to discuss the topics in group study phase.
- Randomized STACK problems also provide a way to assess the students' learning in remote exams.

Thanks!

References

- J. Rämö, P. Nokelainen, E. Viro, T. Kaarakka, R. Kangaslampi, M. Nieminen, J. Hirvonen, and S. Ali-Löytty. Engineering higher education students' approaches to learning in traditional and flipped mathematics courses before and during the COVID-19 pandemic. Submitted, 2020.
- P. Nokelainen, I. Puhakka, V. Vuorenpää, J. Rämö, R. Kangaslampi, T. Kaarakka, E. Viro, J. Hirvonen, and S. Ali-Löytty. Longitudinal study of the development of higher education students' basic psychological needs satisfaction during traditional and flipped learning engineering mathematics courses. Submitted, 2020.