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Abstract: This paper considers the use of static and mobile sensors (quadrotors) for persistent
monitoring in an indoor farming scenario. The focus is on autonomous navigation of the
quadrotors to monitor the coverage holes generated by a number of broken static sensors. To
that end, a three-layer strategy is proposed by (i) dividing the coverage holes into several region-
of-interests (ROIs); (ii) selecting the quadrotor(s) responsible for monitoring each ROI using
a novel Modified Ant Colony Optimization; (iii) designing coverage control with time-varying
density function for ensuring persistent monitoring. Simulation results demonstrate the efficacy
of the proposed strategy in persistently minimizing the coverage holes over time.
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1. INTRODUCTION

Food security has become an important issue due to sev-
eral arising concerns: (i) lack of farms workers, (ii) lim-
ited or decreasing agricultural lands, and (iii) increasing
demands of food. In response to the above issue, innova-
tive ways of farming have started to emerge by utilizing
agricultural automation, such as urban indoor farming
and smart vertical farming (Saad et al., 2021). A key
aspect of automation in these approaches is persistent
plant monitoring which enables real-time analysis and
manipulations to maintain good environmental condition
for the plantations.

Plant monitoring in indoor farming can be realized using
static sensors, mobile sensors or the combination of both.
Static sensors, e.g., via wireless sensor network (WSN), can
perform monitoring task for a long period (days) before
recharging their batteries (Sharma et al., 2019). Static sen-
sors are often fixed into a given infrastructure which makes
further changes or reconfiguration of the sensors, e.g., due
to broken sensors, to be costly. As a result, broken static
sensors will generate coverage holes which degrade the
monitoring’s quality. On the other hand, mobile sensors
based on Unmanned Aerial Vehicles (UAVs) offer robust-
ness and flexibility due to their ability to (autonomously)
reconfigure (reposition) themselves (Elmokadem, 2019).
Among the UAVs, micro or nano quadrotors are partic-
ularly suitable for indoor farming application due to their
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low cost and small size. However, deploying them for long
period is not efficient as most energy is used for the move-
ment of the quadrotors. Combining both static sensors
and UAV-based mobile sensors thus has the potential to
exploit benefits from both solutions. The work by Popescu
et al. (2019) investigate collaborative UAV–WSN scheme
from the viewpoint of data communication. Its application
for crop monitoring is reported in Popescu et al. (2020).
The discussion focuses on the use of a single UAV and
multiple ground sensors for effective data transmission
at the network level. However, the strategy to guarantee
persistent monitoring was not yet discussed.

In this paper, we consider the combination of static and
mobile sensors (quadrotors) for persistent monitoring in an
indoor farming scenario. In contrast to Elmokadem (2019),
the quadrotors act as backup and the main role is to cover
the coverage holes due to broken static sensors. The goal is
to navigate the quadrotors to minimize the coverage holes
over time. To that end, a three-layer strategy is proposed.
First, the coverage holes are divided into several regions to
minimize quadrotors’ flight distance. Then, a novel mod-
ified Ant-Colony Optimization is presented to select the
quadrotor(s) responsible in each region for balancing the
coverage while minimizing its (their) movement. Finally,
coverage control algorithm with time-varying density func-
tion is then designed to ensure that the selected quadrotors
persistently monitor a given region.

The paper is organized as follows. After formally formu-
lating the problem in Section 2, the proposed persistent
monitoring strategy is described in Section 3. The per-
formance of the proposed strategy is demonstrated and
evaluated via simulations in Section 4. Finally, concluding
remarks are given in Section 5.



Fig. 1. Illustration of coverage holes due to some broken
static sensors in indoor farming

2. PROBLEM STATEMENT

In this paper, we consider an indoor farming scenario
where the field area is given by a rectangular shaped region
(compact set) F ⊂ R2. For monitoring purposes, the field
F are fully covered by static sensors that are deployed in
equal distance Ds. Each static sensor is covering a grid,
as depicted in Fig. 1. Consider a problem where coverage
holes occur inside of F due to several broken static sensors.
Specifically, let the set M denote a collection of indices of
m number of broken static sensors whose locations in the
field F are represented by hi ∈ F ⊆ R2, i ∈ M. The
coverage holes H illustrated in Fig. 1 are then defined as

H =
⋃
i∈M

{q ∈ F | ||q − hi||∞ ≤ Ds/2}. (1)

Accordingly, we consider n number of autonomous mobile
sensors moving in (x, y)-coordinates whose set of identifiers
is denoted by I = {1, . . . , n}. The mobile sensors are
realized by equipping a fleet of small quadrotors (or similar
multirotor UAVs) with sensors to monitor the area in the
coverage holes H without any human’s intervention, e.g.,
in replacing or rearranging the static sensors.

Specifically, each quadrotor i is assumed to be able to sense
a subset of area in the field within a fixed sensing radius
Ri > 0. The sensing region of quadrotor i is defined as

Bi(pi) = {q ∈ F | ||q − pi|| ≤ Ri} (2)

where pi = [xi yi]
T ∈ F represents the position of

quadrotor i ∈ I. Within this paper, let us denote the
size of a given region R as A(R). We can then quantify
the sensing capability of each quadrotor as the size of
its sensing region, i.e., A(Bi) := πR2

i . Furthermore, it is
assumed that the position of each quadrotor is updated
according to the kinematic model:

ṗi = ui (3)

where ui ⊆ R2 is the velocity input to be designed. As
can be observed from (3), in the paper we assume that
the quadrotors maintain their altitudes and (x, y)-plane of
all quadrotors to be parallel to the field F . In addition, it
is assumed that the quadrotor’s altitude is embedded into
the sensing radius parameter (i.e., Ri(zi)) as in the case
of a quadrotor equipped with the downward-facing camera
(Funada et al., 2020; Dan et al., 2021).

Hence, in this work we focus our problem on navigating
n-number of quadrotors to monitor the coverage holes
H ⊆ F . In particular, the objective is to design control
input ui in (3) for the quadrotors (mobile sensors) in order
to minimize the coverage holes at all time, i.e., achieving

Fig. 2. An overview of the proposed three-layer strategy
for indoor farming persistent monitoring

persistent monitoring over H, while at the same time
minimizing the flight distance of each quadrotor.

3. PROPOSED AUTOMATED PERSISTENT
MONITORING STRATEGY

One of the challenges of utilizing quadrotor for persistent
monitoring is its limited flight time due to the battery
capacity. One quadrotor may only have a maximum of 20
to 30 minutes flight time (Figliozzi et al., 2018). Therefore,
we need to ensure that the total flight distance of each
quadrotor is minimized. In this paper, we propose a three-
layer strategy focusing on deploying n mobile sensors
(quadrotors) into ℓ smaller regions as illustrated in Fig. 2.
Here, K-Means clustering is used to divide the coverage
holes H (due to broken static sensors shown in blue points
in the top left of the figure) into ℓ ≤ n number of
regions, where each region is identified as Qj , j ∈ C :=
{1, · · · , ℓ} with its centroid cj ∈ R2, j ∈ C. Modified Ant
Colony Optimization (M-ACO) is then used to allocate
the quadrotors to regions Qi by considering the size of
each region A(Qj), j ∈ C, the sensing capability of the
quadrotor A(Bi), i ∈ I, and the distance between the
quadrotor’s initial position and the region. Finally, the
control input to each quadrotor is computed based on
voronoi-based coverage algorithm in each assigned region.

3.1 K-Means Clustering

In this subsection, we will describe how K-Means clus-
tering is used to cluster the coverage holes H as defined
in (1) into ℓ ≤ n number of clusters. K-means clustering
algorithm is chosen since it is a simple and straight-forward
clustering method that can decide whether an object be-
longs to one cluster or not (Wu and Wu, 2020).

In order to cluster the region F based on the coverage
holes H, we first consider the locations of all broken static



sensors, i.e., hi, ∀i ∈ M. We then set the number of
clusters ℓ so that the set of clusters is denoted C. In
practice, ℓ is chosen by considering the number of available
quadrotors, the number of available charging stations and
the size of field F .

The procedure of K-Means clustering is summarized as
follows:

(1) First, initialize ℓ number of random points inside F
as the initial centroids of the cluster.

(2) Each point located at hi, ∀i ∈ M is then assigned
to the closest centroid, by calculating the Euclidean
distances between the point and the centroids.

(3) The centroid positions are then updated by taking
the average of all points that were assigned to it.

(4) Steps 2 and 3 are repeated until the centroid positions
converge, i.e., do not change anymore.

The output of this process is ℓ groups of broken sensors
with each group j ∈ C is denoted by Mj ⊆ M and its
centroid cj . Note that in this work, we approximate the
region to be monitored in each cluster as a rectangle by
taking the outer points at x-axis and y-axis with additional
Ds/2 offset. This ensures that the combination of the
regions overlap the coverage holes H, i.e., ∪j∈CQj ⊇ H.

Note that when the regions are overlapping, then the
broken sensors in that overlapping regions should be
assigned to only one region (e.g., to the one with more
broken sensors around the overlapping regions). This will
ensure no collision between the quadrotors from different
regions as only the quadrotors in one region know about
the broken sensors in the overlapping region.

3.2 Modified Ant Colony Optimization

After dividing the coverage holes into ℓ clusters, in this
subsection we propose a novel Modified Ant Colony Op-
timization (M-ACO) for task allocation, that is to assign
available quadrotors to one of the clusters. Specifically, the
M-ACO utilizes the following information

(1) the size of each task/region, A(Qj), j ∈ C;
(2) sensing capability of each quadrotor, A(Bi), i ∈ I;
(3) distance between the quadrotor’s initial position and

the centroid of the region, dij = ∥pi(0) − cj∥, i ∈
I, j ∈ C.

The proposed M-ACO algorithm is based on the original
Ant-Colony Optimization (ACO) algorithm (Dorigo and
Caro, 1999), one of the meta-heuristic approaches for
solving e.g., Traveling Salesman Problem by mimicking the
behavior of ants in finding their food using pheromones to
communicate and left tracks for other ants. The goal of
the original ACO algorithm is to find a shortest path from
the nest to food. The use of ACO for Task Allocation was
introduced as Collective Path Ant Colony Optimization
(Wang et al., 2013) where ACO was modified to find the
most efficient agent coalition in a region in a multiple
agents and multiple capabilities scenario. This is different
with our case, where multiple agents are to be assigned to
a region in a multiple regions (tasks) scenario.

Our proposed M-ACO method aims at finding the most
suitable agents (quadrotors) to cover the tasks (regions).
The goal is to obtain an equal distribution of quadrotors

in covering the regions of broken sensors and optimizing
the battery utilization of the quadrotors, i.e., minimizing
the distance between the allocated quadrotors and the
selected region. To that end, both the agents and the tasks
are represented as nodes while ants are the computational
units to find the most optimum coalition of agents to cover
each region.

Initially, each ant randomly chooses a task and an agent
using the following probability function:

pkij(t) =


[τij(t)]

α[ηkij(t)]
β∑

a,b⊂allowedk
[τab(t)]α[ηkab(t)]

β
; i, j ∈ allowedk

0; otherwise

(4)
where pkij is the probability of ant k in pairing agent i with
task/region j, τij is the pheromone concentration at path
ij, ηkij is the heuristic function of path ij for ant k, α and β
denote the importance of the pheromone and the heuristic
value respectively. Here, allowedk is the set of agents and
tasks that can be chosen by ant k, i.e., quadrotors that
have not been allocated to any region and also regions that
still have “uncovered” area. The function ηkij is defined by:

ηkij =
A(Qj)−∑

k∈Ij A(Bk)

dij
(5)

where Ij ⊂ I is the set of quadrotors already selected for
region j ∈ C. This heuristic function are defined such that
the ants tend to pair the region that has not been fully
covered yet and then pair it with the closest quadrotor.

In contrast to the original ACO (Dorigo and Caro, 1999)
and CP-ACO (Wang et al., 2013), here one agent can
only be chosen once. Moreover, the region can only be
chosen if its size, A(Qj), is larger than the total capability
of the agents that are already selected for that task,∑

k∈Ij A(Bk). The iteration of pairing the quadrotor and
the region continues until all quadrotors are allocated to
the regions, or until all the regions are fully covered, which
is defined as one tour.

After one tour, each ant updates the pheromones of the
chosen paths according to

τij(t+ 1) = (1− ρ)τij(t) + ∆τij(t), (6)

∆τkij =

{
Pϵk; if ant k select agent i for task j

0; otherwise
(7)

where τij is the pheromone concentration for pairing agent
i and task j, ρ is the pheromone evaporation coefficient,
∆τij =

∑
N ∆τkij is the change of pheromone concentration

for pair ij caused byN number of ants, P is the pheromone
strength, and ϵk is the efficiency factor of ant k in one tour,
defined as

ϵk =

∑
j∈C

(
A(Qj)−

∣∣∑
k∈Ij A(Bk)−A(Qj)

∣∣)∑
j∈C

(∑
k∈Ij dkj

) (8)

It can be observed that the pheromone concentration is
iteratively updated by minimizing the following two costs:
(i) the difference between the size of the region and the
total sensing capability of the selected quadrotors; (ii) the
distance between the paired quadrotors and regions. At
the end of iteration, the chosen solution is the ant tour
which yields a maximum value of efficiency factor ϵk.



To this end, the output of M-ACO is the set of index
Ij ⊆ I, j ∈ C which ensures a distinct selection of
quadrotors to each given region, i.e., Ij∩Ik = ∅ for j ̸= k.
The information of each region Qj , j ∈ C, the locations
of broken static sensors within (i.e., hi, ∀i ∈ Mj), and
the selected quadrotors (i.e., Ij) are then being used to
compute the voronoi-based coverage control algorithm.

3.3 Voronoi-Based Coverage Control Algorithm

In this subsection, we describe the formulation of control
input to ensure all the assigned quadrotors persistently
cover their designated field by adopting the idea from
Hübel et al. (2008); Sugimoto et al. (2015) and Dan et al.
(2021). As the quadrotors are designated to cover (move
within) the area to which they are initially assigned, in the
remaining of the discussion we focus on a single region of
Qj and the quadrotors in the set Ij where j ∈ C.
In order to develop coverage control algorithm for the
fleet of quadrotors, we first model the important areas to
be monitored/covered (i.e., coverage holes) as a density

function ϕ̂j : F → [0, 1] which is formulated using a
mixture of Gaussian functions:

ϕ̂j(q) := max
i∈Mj

(
exp

[
−1

2
(q − hi)

TΣ−1(q − hi)

])
, (9)

where Σ is the covariance matrix.

The formulation above considers identical gaussian func-
tion over a maximum function which ensures equal im-
portance of all the broken static sensors. However, it may
come at a price of non-smoothness between two impor-
tant points. Note that throughout extensive simulations
we observe no practical issues with this formulation. If
necessary, a smoothing procedure using diffussion process
as in Perona and Malik (1990) can be further implemented.

Next, consider the collocations of pi for all i ∈ Ij as pj .
Let us introduce the Voronoi partition of each region Qj

from Cortés et al. (2005), namely the collection of the sets
{Vi(p

j)}i∈Ij defined as

Vi(p
j) = {q ∈ Qj | ||q − pi|| ≤ ||q − pj ||, ∀j ∈ Ij\{i}}.

(10)
Moreover, let us define the feasible sensing area Si(p

j) as

Si(p
j) := Bi(pi) ∩ Vi(p

j).

It is shown in Cortés et al. (2005) that the set Si(p
j)

depends only on the position of quadrotors that lie within
radius 2Ri from pi. Therefore, Si(p

j) can be computed
in a distributed fashion, e.g., by allowing quadrotors to
exchange position information within 2Ri radius.

In the remaining discussion, let us consider a practical
case when the total sensing capabilities of the assigned
quadrotors is much less than the total area to be covered
which requires the quadrotors to periodically visit the
broken sensors locations. To that end, we consider the
following time-varying density function ϕj : Qj × R≥t0 →
[0, 1], updated according to

dϕj(q, t)

dt
=

{
−
¯
δϕj(q, t), if q ∈ ∪i∈IjSi

δ̄(ϕ̂j(q)− ϕj(q, t)) otherwise
(11)

with δ̄,
¯
δ > 0. The update rule (11) implies that the

importance of a point being monitored by a quadrotor

is decreasing with rate
¯
δ, and will then be increased

with rate δ̄ if it is left unmonitored and thus requiring
the quadrotor to revisit that point in order to maintain
persistent monitoring of the coverage holes. Note that the
parameters δ̄,

¯
δ are assigned by the designer by taking into

account the characteristic of the sensor attached to the
quadrotor. For example, if the sensor requires more time
to take measurement, then

¯
δ can be set to be small.

The control input ui for all i ∈ Ij can then be computed
based on the gradient ascent algorithm to maximize the
following objective function

J(pj , t) := −
∑
i∈Ij

∫
Si

||q − pi||2ϕj(q, t) dq. (12)

To that end, let us then consider a (partially) distributed
computation given by

∂J(pj , t)

∂pi
= 2mass(Si(p

j))(cent(Si(p
j))− pi) (13)

where

mass(Si(p
j)) :=

∫
Si

ϕj(q, t) dq

cent(Si(p
j)) :=

1

mass(Si(pj))

∫
Si

qϕj(q, t) dq

(14)

During initial deployment, the position of each quadrotor
may be outside of the designated region Qj . Thus, a
proportional control is introduced for the quadrotor to
navigate towards the centroid of Qj (i.e., cj) until it enters
the region Qj . To summarize, the computation of ui for
i ∈ Ij is given by

ui =


∂J(pj , t)

∂pi
, if pi ∈ Qj

γ(cj − pi) otherwise
(15)

where γ > 0 is the proportional gain.

The Voronoi-based control law implicitly prevents collision
between the quadrotors as discussed in Gusrialdi et al.
(2009). It is worth to note that collision avoidance can
be explicitly incorporated in (15) by using e.g., artificial
potential field method (Gusrialdi and Yu, 2014) or control
barrier function approach (Dan et al., 2021).

Finally, in practice the computation of the density update
in (11) will be be performed by a central system for
each region j, since each quadrotor hardly knows if other
quadrotors have visited each q ∈ Qj . On the other hand,
given the information of Qj , cj , and ϕj(q, t) in Si from
region j’s central system, each quadrotor i ∈ Ij can
distributively compute ui.

4. SIMULATION

In this section, we demonstrate and evaluate the proposed
three-layer strategy in a simulation. To this end, we
consider a field of size F = [0, 20] m× [0, 20] m, equipped
with some static sensors where the inter-sensor distance
(grid size) is Ds = 1 m. We set the number of broken
sensors m = 80 where the positions of the broken static
sensors (coverage holes) are shown in Fig. 3. First, the
coverage holes is divided into several clusters/regions using
K-means clustering where we set the number of clusters
ℓ = 3. The resulting regions Qj are depicted in Fig. 3.
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Table 1. Initial position, sensing radius, and
sensing capability of each quadrotor

i ∈ I 1 2 3 4 5 6

xi(0) [m] 11 6 6 14 10 20
yi(0) [m] 12 8 10 7 14 3
Ri [m] 4.37 3.99 3.57 5.05 3.09 4.72

A(Bi) [ms] 60 50 40 80 30 70

Table 2. The parameters of M-ACO

Parameter Symbol Value

Number of ants N 10
Number of iterations (tours) iter 1000

Initial pheromone value P (0) 1
Pheromone strength P 1

Importance of pheromone α 1
Importance of heuristic function β 1
Pheromone evaporation coefficient ρ 0.2

Next, we assume that the number of quadrotors to be
deployed is n = 6 whose initial positions (e.g., correspond
to locations of the charging stations), sensing radius, and
sensing capabilities are summarized in Table 1. Then, we
utilize the M-ACO with parameters depicted in Table 2 to
allocate individual quadrotor to each region. The results
of M-ACO task allocation are also shown in Fig. 3, where
quadrotor(s) of the same color with a region’s centroid are
allocated to that particular region. The allocation results
showed that: (i) region Q1 with size A(Q1) = 132m2 is
paired with quadrotors 1, 3 and 5 with total sensing capa-
bility of

∑
k∈I1 A(Bk) = (60 + 40 + 30)m2 = 130m2; (ii)

region Q2 with size A(Q2) = 112m2 is paired with quadro-
tor 6 with sensing capability of 70m2; and (iii) region Q3

with size A(Q3) = 136m2 is paired with quadrotors 2 and
4 with total sensing capability of

∑
k∈I3 A(Bk) = (50 +

80)m2 = 130m2. These results showed that the proposed
M-ACO can allocate the quadrotors to the region equally,
by considering the region’s size, the quadrotor’s sensing ca-
pabilities and the distance between the quadrotor’s initial
position and the region’s centroid.

After allocating the quadrotors to each region Qj , we
proceed with discussing the voronoi-based coverage control

algorithm. The density function ϕ̂ is computed as in (9)
with covariance matrix Σ = Ds diag(0.5, 0.5). The time

varying density functions ϕj for all j ∈ C are updated using
δ̄ = 0.05 and

¯
δ = 1.0. The movement of the quadrotors

based on the control input ui in (15) is illustrated in Fig. 4.

Initially, three quadrotors (shown in brown, blue and or-
ange markers in Fig. 4) are outside of their designated
region and moving towards the centroid of the region. Once
inside, they cooperatively cover the important area in the
region modeled by the density function. It is apparent by
observing the movement of quadrotor 6 (shown in brown
marker) that the designed controller ensures the quadro-
tors to persistently cover the areas (i.e., locations of bro-
ken static sensors) by repeatedly revisiting past observed
areas. The grey scale color map on Fig. 4 illustrates the
density function on each broken sensor’s position, where
darker region has high density while lighter color region
means low density. From Fig. 4, we can observe that the
proposed controller ensures that the density value on the
broken sensors are being kept low, which directly linked to
a good coverage performance.

Note that the case of fully coverage on all broken sensors
at the same time are denoted by zero density function
over the whole region. However, this cannot be achieved
in the current simulation as the total sensing capabilities
of the assigned quadrotors is less than the size of the
area to be covered. To evaluate the performance of the
coverage control algorithm, let us define the ratio of the
currently required region to be covered versus the total
desired coverage within a given region Qj as

ζj(t) :=

∫
Qj ϕ

j(q, t) dq∫
Qj ϕ̂j(q, t) dq

. (16)

The plot of the ζj(t) for the simulation is shown in Fig. 5
for a longer time duration than the snapshots in Fig. 4.
It can be observed that the proposed control algorithm
minimizes the coverage holes indicated by low value on
density function. Hence, persistent monitoring is ensured.

5. CONCLUSION AND FUTURE WORK

A network of quadrotors is utilized for achieving persistent
monitoring in indoor farming under the presence of broken
static sensors. To this end, a novel three-layer strategy
is proposed for navigating the quadrotors to minimize
the coverage holes generated by the broken static sen-
sors. Specifically, after dividing the coverage holes (broken
static sensors) into a number of regions, a novel M-ACO
is then proposed to allocate the available quadrotors to
each region for ensuring balanced coverage between the
regions and minimizing flight distances. A coverage control
with time-varying density function is then designed to
control the movement of quadrotors in ensuring persistent
monitoring. Simulation results demonstrate that the pro-
posed strategy persistently minimizes the coverage holes
over time. In the future, we aim to evaluate the proposed
strategy using a robotic experimental testbed and also to
incorporate charging’s scheduling of the quadrotors.
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