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Abstract
Stepped-wedge cluster randomized trials (SW-CRTs) are typically analyzed
using mixed effects models. The fixed effects model is a useful alternative that
controls for all time-invariant cluster-level confounders and has proper control
of type I error when the number of clusters is small. In principle, all clus-
ters in SW-CRTs are designed to eventually receive the intervention, but in
real-world research, some trials can end with unexposed clusters (clusters that
never received the intervention), such as when a trial is terminated early based
on interim analysis results. Typically, unexposed clusters are expected to con-
tribute no information to the fixed effects intervention effect estimator and are
excluded from fixed effects analyses. In this article we mathematically prove
that inclusion of unexposed clusters improves the precision of the fixed effects
least squares dummy variable (LSDV) intervention effect estimator, re-analyze
data from a recent SW-CRT of a novel palliative care intervention containing
an unexposed cluster, and evaluate the methods by simulation. We found that
including unexposed clusters improves the precision of the fixed effects LSDV
intervention effect estimator in both real and simulated datasets. Our simula-
tions also reveal an increase in power and decrease in root mean square error.
These improvements are present even if the assumptions of constant residual
variance and period effects are violated. In the case that a SW-CRT concludes
with unexposed clusters, these unexposed clusters can be included in the fixed
effects LSDV analysis to improve precision, power, and root mean square error.

K E Y W O R D S

cluster randomized trials, fixed effects model, precision, stepped wedge trials

1 INTRODUCTION

In a cluster randomized trial (CRT), randomization is carried out on the cluster-level rather than the individual-level.
The stepped-wedge cluster randomized trial (SW-CRT) is a specific type of CRT where clusters begin the trial unexposed
to the intervention and are randomized to start the intervention across different periods or “steps.” The crossover is
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uni-directional and continues until all clusters are exposed to the intervention.1,2 The logistical advantage of the phased
implementation makes the SW-CRT an increasingly popular design.1,3 Due to its unique features as a uni-directional
crossover CRT, different statistical models have been proposed and applied to SW-CRT data.3

The most popular statistical model for cross-sectional SW-CRT designs, where each individual is only observed during
one period, is the “Hussey and Hughes” mixed effects model.3 This mixed effects model treats clusters as random and
periods as fixed effects.2 Extensions to the Hussey and Hughes mixed effects model have been proposed and applied
over the past few years with new models adjusting for cluster-by-period random interaction effects,4,5 between-period
correlation that decays over time,6 and more.3 Alternatively, previous studies have also treated clusters as fixed effects in a
fixed effects least squares dummy variable (LSDV) model.7-11 While different mixed effects models with additional random
effects terms have been proposed, developed, and studied in the context of SW-CRTs,3 there have been comparatively few
methodological developments in fixed effects methods for stepped-wedge designs.

The Hussey and Hughes mixed effects model is often preferred over the fixed effects LSDV model due to reduced SE for
the intervention effect estimates.12,13 Mixed effects models, in general, treat clusters as random effects that are uncorre-
lated with both the residual error term and other model covariates.14 If the cluster random effect terms are correlated with
the other model covariates, as is the case when there are unmeasured cluster-level time-invariant confounders, the mixed
effects intervention effect estimator becomes biased, inconsistent, and fails to remove the confounding.12,14-17 Since mixed
effects models rely on randomization to control for known and unknown confounders, the benefits of randomization may
be lost when the number of clusters is small, making it difficult to balance cluster characteristics.18,19

In contrast, the fixed effects LSDV model treats clusters as fixed effects using dummy variables and estimates the
intervention effect using ordinary least squares (OLS).12,17 Accordingly, the fixed effects LSDV model estimates the inter-
vention effect using within-cluster comparisons and controls for all cluster-level time-invariant confounders.12 Therefore,
a major distinction between modeling clusters as random or fixed depends on whether such confounders may exist.15

Furthermore, modeling clusters as random effects in a mixed effects model tends to lead to inflated type I error rates
and overly narrow confidence intervals for the intervention effect estimates when the number of clusters is small.13,20,21

Due to real world constraints, it is not uncommon for SW-CRTs to have such low numbers of clusters.22 This inflated type
I error rate is not observed in fixed effects models, making it an attractive alternative.13

Previous studies have elected to use a fixed effects LSDV model to analyze data collected from a SW-CRT, citing
difficulties that arise from small number of clusters,9,23 practical and logistical issues that prevented randomization,24

and concerns over confounding between cluster and outcomes.8 Under such conditions, the fixed effects model has been
an effective complementary approach to the more widely adopted mixed effects models for analyzing SW-CRTs.

A potential drawback of the fixed effects LSDV model is its inability to estimate coefficients for variables that have no
within-cluster variation.12 In principle, all clusters in a SW-CRT spend periods unexposed and exposed to the intervention
over the duration of the trial. Therefore, all clusters are designed to have within-cluster variation in intervention status.
In reality, however, some clusters may end the trial without having received the intervention. For example, a SW-CRT of
seasonal malaria chemoprevention was stopped following interim analysis and clusters that were randomized to receive
the intervention at later periods ended the trial unexposed to the intervention.25 In Section 3, we will introduce and discuss
a motivating and illustrative case study that encountered an unexposed cluster due to hospital management restructuring.

Fixed effects analyses are often referred to as only making “within-unit comparisons”26 where “only covariates that
vary within-subjects at the observational level should be used in the model,”15 and “cases that do not change either (1)
do not contribute much information to the analysis or (2) are altogether omitted by design.”27 Under such phrasing and
guidance, one may have the impression that an unexposed cluster would not contribute meaningfully to the fixed effects
intervention effect estimate. While these authors15,27 did not explicitly state whether unexposed units should or should
not be included in the fixed effects analysis, others have explicitly stated that “Comparisons are made within individuals
[units] rather than between individuals [units]… Thus, only those who have experienced both the outcome and the
exposure of interest are included.”28

However, research on the conditional Poisson model for drug safety assessment, which relies on within-subject com-
parisons, has shown that the inclusion of unexposed subjects provides useful information about time-varying covariates
and reduces confounding by these covariates.29 Ma, Lam and Cheung further show that the inclusion of unexposed sub-
jects in the conditional Poisson model improves the precision of the exposure effect estimator when the analysis adjusts
for time-varying covariates.30 Likewise, models for SW-CRTs need to adjust for periods as time-varying covariates. Draw-
ing on this similarity, we hypothesize that including clusters that are never exposed to the intervention (hereon referred
to as “unexposed clusters”) in a fixed effects LSDV analysis of cross-sectional SW-CRT data will improve the precision of
the intervention effect estimator.
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F I G U R E 1 A SW-CRT design with 4 exposed clusters and 1 unexposed cluster across 5 periods (4 steps). Cluster-period cross-sections
that receive the intervention are shaded in gray; ni,j is the sample size for the ith cluster and jth period

In Section 2, we mathematically prove that the inclusion of unexposed clusters in the analysis of a SW-CRT design
increases the precision of the fixed effects LSDV intervention effect estimator. In Section 3, we illustrate the benefits of
including unexposed clusters in a fixed effects LSDV model by re-analyzing a SW-CRT of a novel palliative care model
that had four exposed clusters and one unexposed cluster. In Section 4, we conduct extensive simulations to assess the
impact of including unexposed clusters on the fixed effects LSDV intervention effect estimator in terms of precision, bias,
coverage probability, power, type I error, and root mean square error. In Section 5, we end with some concluding remarks.

2 ANALYSIS MODEL AND PRECISION

We begin with a 5-cluster, 5-period SW-CRT design (Figure 1) based on the motivating case study to be described in
Section 3. Let ni,j be the number of individuals in the ith cluster (i = 1, 2, 3, 4, 5) during the jth period (j = 1, 2, 3, 4, 5).
Note that individuals in Cluster 5 are never exposed to the intervention (an unexposed cluster).

The outcome of the SW-CRT is modeled using the fixed effects LSDV model:

Yijk = 𝛿Zij +
5∑

p=2
𝜙jI[j=p] +

5∑

c=1
𝛼iI[i=c] + eijk,

where Yijk is the health outcome of the kth individual (k = 1, … ,ni,j) in the ith cluster (i = 1, … , 5) and jth period (j =
1, … , 5), 𝛿 is the intervention effect, Zij is the intervention indicator for the ith cluster during the jth period (Zij = 1, if
exposed to intervention, Zij = 0 otherwise), 𝜙j is the fixed effect for the categorical jth period (𝜙1 = 0 for identifiability),
𝛼i is the fixed effect for the ith cluster, I[j=p] and I[i=c] are dummy variables for periods and clusters, respectively, and eijk is
the residual error assumed to be independently and identically distributed with variance σ2.

Writing the model in the matrix form:

Y = X𝛽 + e,

where X is an N × 10 design matrix, with N being the total number of study participants, and 𝛽 = (𝛿, 𝜙2, .., 𝜙5, 𝛼1, .., 𝛼5)′.
Since all variables in the model are dummy coded, the entire matrix X is composed of 0’s and 1’s with column 1 containing
data on the intervention status, columns 2 to 5 on whether a participant is in period 2 to 5, and columns 6 to 10 on whether
a participant is in cluster 1 to 5. For example, a participant from cluster 2 who received the intervention in period 2 would
contribute a row of (1, 1, 0, 0, 0, 0, 1, 0, 0, 0).

Using OLS, the intervention effect estimator ̂𝛿 is the first element in the vector of coefficients:

̂𝜷 =
(

X ′X
)−1X ′Y ,

where X ′X is a matrix product assumed to be positive definite. Given the OLS variance-covariance matrix:

Var(̂𝜷) = σ2(X ′X
)−1

.
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The variance of the intervention effect estimator Var(̂𝛿) is Var(̂𝜷)1,1 and Precision(̂𝛿) = 1∕Var(̂𝛿). Since OLS assumes
constant σ2, Var(̂𝜷) ∝

(
X ′X

)−1.
Specifically, to distinguish different ways of using the data collected from the unexposed cluster, let ̌X be the ̌N × 10

design matrix for the fixed effects LSDV analysis containing observations from all 5 periods in all 5 clusters (including
unexposed Cluster 5), and ̇X be the ̇N × 9 design matrix containing observations from all 5 periods in the 4 exposed
clusters only (Clusters 1 to 4), where ̌N and ̇N are the total sample sizes in the two models, respectively. Furthermore,
let ̃X be the ̃N × 10 design matrix for the analysis containing observations from all 5 periods in the 4 exposed clusters and
observations from only period 1 of the unexposed Cluster 5. The construction of this design matrix ̃X with a sample of size
̃N serves two purposes. First, it helps demonstrate that unless the unexposed cluster provides information for estimating
period effects, which requires observations from at least two periods, its inclusion will not improve the precision of the
intervention effect estimate beyond analyzing only the exposed clusters with ̇N observations. Second, as will be seen later,
it facilitates the proof by providing a same-sized product matrix for comparison with the product matrix based on the
sample of ̌N observations from all clusters and all periods. Assuming n5,1 > 0 and

∑5
j=2n5,j > 0, ̌N >

̃N >
̇N.

Then, ̌X ′
̌X , ̇X ′

̇X and ̃X ′
̃X are the 10 × 10, 9 × 9, and 10 × 10 product matrices explicitly defined in terms of ni,j in the

Online Supplementary Material S1a, S1b, and S1c, respectively. The similarities and differences in the elements of these
three product matrices will be detailed in Sections 2.1 and 2.2. Furthermore, let ̌𝛿, ̇𝛿, and ̃𝛿 be the least-square estimators
of intervention effect based on the three models.

The proof that inclusion of the unexposed cluster reduces the variance and increases the precision of the fixed effects
LSDV intervention effect estimator ̌𝛿 proceeds in two steps:

1. We demonstrate that the variance of the intervention effect estimator Var( ̇𝛿) obtained from ̇X ′
̇X (exposed clusters only)

is equal to Var(̃𝛿) obtained from ̃X ′
̃X (exposed clusters and one period in the unexposed cluster):

Var( ̇𝛿) = 𝜎2( ̇X ′
̇X)−1

1,1 = 𝜎
2(̃X ′

̃X)−1
1,1 = Var(̃𝛿).

1. We demonstrate that the variance of the intervention effect estimator Var( ̌𝛿) obtained from ̌X ′
̌X (all clusters, all periods)

is smaller than Var(̃𝛿) obtained from ̃X ′
̃X :

Var( ̌𝛿) = 𝜎2( ̌X ′
̌X)−1

1,1 < 𝜎
2(̃X ′

̃X)−1
1,1 = Var(̃𝛿).

Altogether, we prove Var( ̌𝛿) < Var( ̇𝛿).

2.1 Proof of Var(�̇�) = Var(�̃�)

Since ̃X ′
̃X contains observations from the four exposed clusters and only period 1 of the unexposed Cluster 5, the upper-left

block of the 9 × 9 elements of ̃X ′
̃X (Online Supplementary Material S1c) is equal to ̇X ′

̇X (Online Supplementary Material
S1b), where ̇X ′

̇X can interpreted as a submatrix of ̃X ′
̃X :

̃X ′
̃X =

(
̇X ′
̇X 0

0 n5,1

)
.

The blockwise inverted matrix
(
̃X ′
̃X
)−1

can then be defined as:

(
̃X ′
̃X
)−1

=

(
̇X ′
̇X 0

0 n5,1

)−1

=

(
( ̇X ′

̇X)−1 0
0 1∕n5,1

)
.
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Therefore, (̃X ′
̃X)−1

1,1 = ( ̇X
′
̇X)−1

1,1 and on the OLS model assumption of constant 𝜎2:

Var(̃𝛿) = 𝜎2(̃X ′
̃X)−1

1,1 = 𝜎
2( ̇X ′

̇X)−1
1,1 = Var( ̇𝛿).

2.2 Proof of Var(�̌�) < Var(�̃�)

For brevity, we present a slightly abbreviated proof of Var( ̌𝛿) < Var(̃𝛿). The complete proof can be found in the Online
Supplementary Material S2.

First, we represent ̌X ′
̌X (Online Supplementary Material S1a) and ̃X ′

̃X in terms of submatrices:

̌X ′
̌X =

(
̌A ̌B′

̌B ̌D

)
,

̃X ′
̃X =

(
̃A ̃B′

̃B ̃D

)
.

Submatrix ̌A is a scalar that equals the dot product of the first row of ̌X ′ by the first column of ̌X . Since the first column
of ̌X indicates the intervention status of each participant, ̌A equals the total number of trial participants who receive the
intervention.

Submatrix ̌B is a column vector of length 9 that equals the dot product of all rows but the first of ̌X ′ (containing dummy
variables for the four period and five cluster effects) by the first column of ̌X (indicating intervention status). Therefore, ̌B
equals the marginal numbers of participants who receive the intervention in each period and each cluster. Since Cluster
5 is unexposed, the marginal number of participants who receive the intervention under the two study designs are the
same, ̌A = ̃A and ̌B = ̃B.

The 9 × 9 submatrix ̌D equals the matrix product of the rows of ̌X ′ and columns of ̌X that represent dummy variables
for the periods and clusters.

With these submatrices, the blockwise inverted matrix ( ̌X ′
̌X)−1 is defined as:

( ̌X ′
̌X)−1 =

⎛
⎜
⎜⎝

(
̌A − ̌B′ ̌D−1

̌B
)−1

−
(
̌A − ̌B′ ̌D−1

̌B
)−1

̌B′ ̌D−1

− ̌D−1
̌B
(
̌A − ̌B′ ̌D−1

̌B
)−1

̌D−1 + ̌D−1
̌B
(
̌A − ̌B′ ̌D−1

̌B
)−1

̌B′ ̌D−1

⎞
⎟
⎟⎠
,

where:

Var( ̌𝛿) = 𝜎2( ̌X ′
̌X)−1

1,1 = 𝜎
2
(
̌A − ̌B′ ̌D−1

̌B
)−1

.

The blockwise inverted matrix (̃X ′
̃X)−1 and Var(̃𝛿) are similarly defined.

Given that ̌X ′
̌X and ̃X ′

̃X are same-sized positive definite matrices ( ̌X ′
̌X ≻ 0 and ̃X ′

̃X ≻ 0), the principal submatrices
̌D and ̃D are also positive definite matrices ( ̌D ≻ 0 and ̃D ≻ 0).31

̌D and ̃D are explicitly defined in terms of ni,j in the Online
Supplementary Material S1d.

The difference between ̌D and ̃D is positive semi-definite, where x′( ̌D − ̃D)x ≥ 0 for all x in R9,31 as proven in the
Online Supplementary Material S2. Therefore, we can order the submatrices as induced by Loewner partial ordering31:

̌D ≽
̃D,

and:

̌D−1
≼
̃D−1

.

Given that vector ̌B = ̃B (here on referred to as B) and scalar ̌A = ̃A (here on referred to as A):

(
A − B

′
̌D−1

B

)−1
≤

(
A − B

′
̃D−1

B

)−1
.
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Therefore, on the OLS assumption of constant 𝜎2:

Var( ̌𝛿) ≤ Var(̃𝛿).

Furthermore, in Online Supplementary Material S2, we provide a proof by contradiction revealing that Var( ̌𝛿) ≠ Var(̃𝛿),
therefore Var( ̌𝛿) < Var(̃𝛿).

Combining the proofs in Sections 2.1 and 2.2, we demonstrate that Var( ̌𝛿) < Var( ̇𝛿), where the inclusion of the unex-
posed cluster improves precision of the fixed effects LSDV intervention effect estimator. While this proof is demonstrated
with a 5-cluster, 5-period SW-CRT design, the proof’s utilization of submatrices implies that this result applies to SW-CRT
designs with any number of exposed and unexposed clusters. A simple extension of the proof while maintaining the stan-
dard OLS assumption of equal variance demonstrates that the effect of including an always-exposed cluster (a cluster
that never receives the control condition) on the precision of the intervention effect estimator is equivalent to the effect
of including an unexposed cluster (Online Supplementary Material S3).

3 CASE STUDY

We re-analyzed data from a recent SW-CRT comparing a standard palliative care delivery model (control) against a novel
co-rounding model (intervention) for hospital inpatients with cancer.32 In the standard care model, oncologists conducted
the daily ward rounds and referred patients to the palliative care department if considered appropriate. In the novel
co-rounding model, oncologists and palliative care specialists jointly conducted the ward rounds and initiated palliative
care as per their consensus. The primary endpoint for this trial was hospital length of stay (LOS). It was hypothesized that
LOS would be reduced under the novel co-rounding model.

The study was initially planned as a 4-cluster SW-CRT with 5 four-month periods. The clusters were different oncology
teams in the Singapore General Hospital. However, due to the restructuring of hospital management, a fifth oncology team
was developed and deployed by the hospital. This happened after randomization of the original 4 clusters and just before
study initiation. Since this fifth cluster was not formally part of the trial or randomization process, it implemented the
standard care model for the entire duration of the trial. As a result, this study resembles the 5-cluster, 5-period SW-CRT
design described above (Section 2).

The original publication on the efficacy of the novel co-rounding model used a fixed effects LSDV model to account
for the cluster effects and control for confounding.32 The fixed effects LSDV model was used due to the difficulty in
controlling for confounding (eg, the clusters differed not only in patient characteristics but also in unmeasured clinician
characteristics) and concerns on the robustness of applying the mixed effects model to a SW-CRT with such a small
number of clusters.13,20 The analysis did not include the unexposed cluster because it was not part of the original trial
plan and it was not yet methodologically clear what the implications of including an unexposed cluster in a fixed effects
LSDV model were.

We re-analyzed the data using the fixed effects LSDV model, with and without the unexposed cluster. For the present
purpose, we only kept the first admission if a participant was admitted more than once over the study duration. In total,
there were 3462 admissions. We analyzed ln(LOS) as the outcome variable. As shown in Figure 2, which pooled data
from all 5 clusters, ln(LOS) was approximately normally distributed under both co-rounding and standard care models,
but LOS was not.

The pooled analysis was only sensible if the underlying pattern of period effects were expected to be the same between
the exposed and unexposed clusters, an assumption of the fixed effects LSDV model.33 There are currently no standard
practices for evaluating this assumption. As such, we applied multiple methods and confirmed that they gave consis-
tent findings. First, we tested for equivalent period effects between the unexposed cluster and exposed clusters using an
ANOVA to compare a typical fixed effects LSDV model against a fixed effects LSDV model with interaction terms between
the unexposed cluster and period indicators. The ANOVA showed no evidence of difference, with P = 0.302 (on 4 degrees
of freedom). We also estimated the Akaike Information Criterion (AIC) and Bayesian Information Criterion (BIC) of
the models excluding and including the interaction terms (AIC: 9524.341 and 9527.461, respectively. BIC: 9591.987 and
9619.705, respectively). Both favored the model that excluded the interaction terms and assumed same period effects
between exposed and unexposed clusters.

Table 1 shows the analysis results. We estimated the intervention effect among all cancer patients or among only stages
III and IV cancer patients, who were expected to be the primary beneficiaries of palliative care. Without including the
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F I G U R E 2 Distribution of hospital length of stay (LOS) and ln(LOS) for cancer patients who received either the standard palliative
care delivery model (control) or a novel co-rounding model (intervention)

T A B L E 1 Intervention effect estimates ̂𝛿 in analyses excluding (−) and including (+) the unexposed cluster in a fixed effects LSDV
analysis of data from a SW-CRT testing a novel co-rounding model of palliative care

Analysis Patients 𝜹 SE 95% CI

− unexposed cluster All −0.101 0.073 (−0.243, 0.042)

+ unexposed cluster All −0.126 0.064 (−0.251, −0.001)

− unexposed cluster Stage III/IV −0.112 0.077 (−0.262, 0.038)

+ unexposed cluster Stage III/IV −0.141 0.067 (−0.273, −0.009)

Note: The intervention effect ̂𝛿, SEs, and 95% Wald confidence intervals were estimated for all cancer patients or Stage III/IV cancer patients only.

unexposed cluster, the SEs of the intervention effect estimates were 0.073 and 0.077 among all patients and stage III/IV
patients, respectively. In contrast, the inclusion of the unexposed cluster in the fixed effects LSDV analysis yielded ∼12%
smaller SEs and narrower 95% Wald confidence intervals (95% CI), both in the analyses of all patients and only stage
III/IV patients (Table 1). The inclusion of the unexposed cluster also altered the point estimate, from −0.101 to −0.126
among all patients. Despite this change, the 95% confidence intervals of the analyses with and without the unexposed
cluster continued to overlap substantially. The difference of 0.025 between the point estimates was small compared to
the SEs both with and without the unexposed cluster. A similar pattern was seen among stage III/IV patients. Additional
analyses of all patients and only stage III/IV patients from the exposed clusters and only period 1 of the unexposed cluster
(resembling the ̃X design matrix described in Section 2) yielded intervention effect estimates and SEs identical to the
corresponding analyses of the exposed clusters only.
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F I G U R E 3 Simulation of three different designs with 4, 8, or 12 exposed clusters. There are 5 periods (4 steps) in each design.
Cluster-period cross-sections that are receiving the intervention are shaded in gray

4 SIMULATION

4.1 Simulation settings

Realistic simulation parameters were generated with reference to the results from the case study of ln(LOS) under different
palliative care models (Section 3). We examined scenarios where there were 4, 8, or 12 exposed clusters and 0, 1, 2, or 3
unexposed clusters. Accordingly, the total number of clusters in each simulation scenario was C = 4+ 0, 4+ 1, 4+ 2, 4+ 3,
8+ 1, … , 12+ 3. All scenarios had a fixed total of 5 periods (4 steps) with either 1, 2, or 3 clusters crossing from control
to intervention at each step, depending on the number of exposed clusters (4, 8, 12, or) (Figure 3).

4.1.1 Simulation based on the Hussey and Hughes mixed effects model

We simulated SW-CRT data based on the Hussey and Hughes mixed effects model2:

Yijk = 𝛿Zij + 𝜙j + 𝛼i + eijk

for the kth individual (k = 1, … ,ni,j) in the ith cluster (i = 1, … ,C) and jth period (j = 1, … , 5), where Yijk was a con-
tinuous outcome, 𝛿 was the intervention effect, Zij was the intervention indicator for the ith cluster during the jth period
(Zij = 1, if exposed to intervention, Zij = 0 otherwise), 𝜙j was the fixed effect for the jth period (𝜙1 = 0 for identifiability),
𝛼i ∼ Normal

(
𝜇, τ2

α
)

was the random effect for the ith cluster, and eijk ∼ Normal
(
0, σ2

e
)

was the residual independent of 𝛼i.
We generated the true intervention effects 𝛿 equal to 0, −0.1, and −0.2, and a linear period effect equal to an increase

of 0.1 per period. We also considered scenarios where the true period effects 𝜙j = 0 (for all j) to examine the effects of
including unexposed clusters when period effects are absent from the underlying data generating process. We generated
residual error eijk by setting eijk ∼ Normal(0, 1). To simulate cluster effects, we set the between-cluster variance 𝜏2

𝛼

to 1∕99,
1∕19, and 1∕9, to generate corresponding intracluster correlation (ICC) values of 0.01, 0.05, and 0.1, where ICC = 𝜏

2
𝛼

𝜏
2
𝛼

+σ2
e
.2

For each of these scenarios, we used a range of different cluster sample sizes ni for each period in the ith cluster, where
ni ∼ Gamma(k, 𝜃) with = 30, 100, and 300, and 𝜃 = 1. This produces an average size of 30, 100, or 300. Realized sample
sizes ni,j for the ith cluster during the jth period were subsequently generated with ni,j ∼ Poisson (ni), so the sample size
could vary between periods within a cluster. The trial’s total sample size was N =

∑
i
∑

j ni,j.
In total, 324 scenarios were investigated (3 # of exposed clusters × 4 # of unexposed clusters × 3 intervention effect

sizes × 3 values of 𝜏2
𝛼

× 3 cluster sample sizes).

4.1.2 Misspecification with non-constant residual variance across clusters

The fixed effects LSDV model assumes constant residual variance. To assess the model robustness and impact of including
unexposed clusters in the presence of model misspecification, we simulated SW-CRT data by extending the mixed effects
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model in Section 4.1.1 to allow the SD of the residuals to vary across clusters. The residual SD in the ith cluster, 𝜎e,i, was
set to follow a gamma distribution, 𝜎e,i ∼ Gamma

(
k = CV2

, 𝜃 = 1∕CV2), with E
[
𝜎e,i

]
= 1 and coefficient of variation CV

= 0.1, 0.5, or 1.
For the purposes of these simulations, we fixed the true intervention effects 𝛿 to −0.1, between-cluster variance 𝜏2

𝛼

to
1∕19, and the average cluster size E [ni] to 100. In total, 36 scenarios were investigated (3 # of exposed clusters × 4 # of
unexposed clusters × 3 CVs for cluster-specific residual SD 𝜎e,i).

4.1.3 Misspecification with non-constant period effects across clusters

We evaluated whether varying the period effects between clusters affects the impact of including unexposed clusters
on the precision and other properties of the fixed effects LSDV estimator. We varied period effects between clusters by
simulating SW-CRT data based on the “Hooper-Girling” mixed effects model4,5:

Yijk = 𝛿Zij + 𝜙j + 𝛼i + 𝛾ij + eijk

Along with the cluster random effect 𝛼i and period fixed effect 𝜙j, we simulated a cluster-by-period random interaction
effect, 𝛾ij ∼ Normal

(
0, 𝜏2

𝛾

)
. We set 𝜏2

𝛾

to 0, 1∕76, and 2∕57, to generate corresponding realistic cluster autocorrelation
(CAC) values of 1, 0.8, 0.6, where CAC = 𝜏

2
𝛼

𝜏
2
𝛼

+𝜏2
𝛾

.4,34,35

As in Section 4.1.2, we fixed the true intervention effects 𝛿 to−0.1, between-cluster variance 𝜏2
𝛼

to 1∕19, and the average
cluster size E [ni] to 100. In total, 36 scenarios were investigated (3 # of exposed clusters × 4 # of unexposed clusters × 3
values of 𝜏2

𝛾

).

4.1.4 Analysis of simulated data

In each simulation scenario, we generated s = 10 000 simulated data sets and estimated the intervention effect ̂𝛿s
using the fixed effects LSDV model. We present the properties of the intervention effect estimator in terms of bias,
precision, power, coverage probability (CP), and root mean squared error (RMSE). We present the absolute bias(

Abs Bias =
[∑10 000

s=1
̂
𝛿s∕10 000

]
− 𝛿

)
when 𝛿 = 0, and the relative bias (Rel Bias = [Absolute bias∕𝛿] × 100)when 𝛿 ≠ 0.

Precision is the reciprocal of the average estimated variance
(

Precision = 1∕
[∑10 000

s=1 Var
(
̂
𝛿s

)
∕10 000

])
. Power is the

empirical power (if 𝛿 < 0) or empirical type I error rate (if 𝛿 = 0) for rejecting the null hypothesis of 𝛿 ≥ 0 at the one-sided
significance level of 0.05. CP is the probability that the 95% confidence interval contains the true effect. RMSE is the
square root of the average squared difference between the estimated effect ̂𝛿s and the true effect 𝛿 over the 10 000 simu-

lated data sets for each scenario

(
RMSE =

√
∑10 000

s=1

[
̂
𝛿s − 𝛿

]2
∕10 000

)
. The Monte Carlo SEs (SD of the 10 000 estimated

intervention effects ̂𝛿s for each scenario) are included in the Online Supplementary Material S4.

4.2 Simulation results

4.2.1 Simulation based on the Hussey and Hughes mixed effects model

Figure 4 shows the simulation results in the scenarios with true intervention effect 𝛿 = −0.1 and between-cluster vari-
ance 𝜏2

𝛼

= 1∕19. Among the scenarios considered, the inclusion of unexposed clusters generally increased the precision,
power, and decreased the RMSE of the fixed effects LSDV intervention effect estimator. Within the range considered, the
more unexposed clusters included, the better the improvement. Overall, the fixed effects LSDV method yielded practi-
cally unbiased estimates with CP of 95% confidence interval (0.945-0.955) close to the nominal level. The inclusion of
unexposed clusters had no impact on these two properties.

The results across all values of 𝛿 (𝛿 = 0,−0.1,−0.2) and 𝜏2
𝛼

(𝜏2
𝛼

= 1∕99, 1∕19, 1∕9) were qualitatively similar to those
reported above, details in the Online Supplementary Material S5. Scenarios when 𝛿 = 0 all maintained near 5% type I error
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F I G U R E 4 The impact of including unexposed clusters on properties of the fixed effects LSDV intervention effect estimator, presented
across number of exposed clusters, unexposed clusters, and average cluster size E[ni ], with fixed true intervention effect δ = −0.1 and
between-cluster variance 𝜏2

𝛼

= 1∕19

rates, regardless of the inclusion of unexposed clusters (Online Supplementary Material S5). Additionally, the benefits
of including up to 3 unexposed clusters are still observed when there are large numbers of randomized clusters across 5
periods (4 steps), although the relative improvements in precision were milder (Online Supplementary Material S6).

Similar to Figure 4, Figure 5 shows the simulation results in the scenarios with true intervention effect 𝛿 = −0.1,
between-cluster variance 𝜏2

𝛼

= 1∕19, but where the true period effects 𝜙j = 0 (for all j). These simulation results reveal
that the improvements from including unexposed cases in a fixed effects LSDV model (adjusting for period effects) are
unaffected by the absence of period effects in the underlying data generating process (Figure 5).

4.2.2 Misspecification with non-constant residual variance across clusters

Figure 6 shows the properties of the intervention effect estimator when the true intervention effect 𝛿 = −0.1, the
between-cluster variance 𝜏2

𝛼

= 1∕19, the average cluster sample size E [ni] = 100, and CV of the cluster-specific residual
SD = 0.1, 0.5, or 1.0.

Despite violating OLS assumptions, the inclusion of unexposed clusters generally increased the precision, power, and
decreased the RMSE of the fixed effects LSDV intervention effect estimator (Figure 6). Within the range considered,
the more unexposed clusters included, the better the improvement. These improvements are observed across different
amounts of heterogeneity in the residual SD 𝜎e,i.
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F I G U R E 5 The impact of including unexposed clusters on properties of the fixed effects LSDV intervention effect estimator when
there are no period effects (φj = 0, for all j) in the data generating process, presented across number of exposed clusters, unexposed clusters,
and average cluster size E[ni], with fixed true intervention effect δ = −0.1 and between-cluster variance 𝜏2

𝛼

= 1∕19

Relative bias and CP were largely unaffected by the inclusion of unexposed clusters. Furthermore, increasing the CV of
the residual SD had little effect on the relative bias and CP of the fixed effects LSDV intervention effect estimates (Figure 6).
However, increasing the CV of the residual SD resulted in reduced precision and power. This occurred regardless of the
inclusion of unexposed clusters, and the inclusion of unexposed clusters did not make it worse. On the contrary, the
inclusion of unexposed clusters improved precision, power, and RMSE despite variable cluster-specific residual SD 𝜎e,i.

4.2.3 Misspecification with non-constant period effects across clusters

Figure 7 shows the properties of the intervention effect estimator when the true intervention effect 𝛿 = −0.1, the
between-cluster variance 𝜏2

𝛼

= 1∕19, the average cluster sample size E [ni] = 100, and 𝜏2
𝛾

= 0, 1∕76, or 2∕57.
Despite the random cluster-by-period interaction effects 𝛾ij, the inclusion of unexposed clusters increased the preci-

sion, power, and decreased the RMSE of the intervention effect estimator (Figure 7). Across different amounts of 𝜏2
𝛾

and
number of unexposed clusters considered, the more unexposed clusters included, the better the improvement.

Figure 7 also reveals that the magnitude of 𝜏2
𝛾

had little effect on the relative bias, precision, and power of the interven-
tion effect estimators. However, CP decreased and RMSE increased substantially in relation to increase in 𝜏2

𝛾

. Nevertheless,
this occurred regardless of whether unexposed clusters were included in the analysis and the inclusion of unexposed
clusters did not worsen the CP.
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F I G U R E 6 The impact of including unexposed clusters on properties of the fixed effects LSDV intervention effect estimator when
clusters have unique within-cluster variability σe,i in the residual errors. Properties of the intervention effect estimator are presented across
number of exposed clusters, unexposed clusters, and coefficient of variation of the within-cluster variability CV(σe,i), with fixed true
treatment effect δ = −0.1, between-cluster variance 𝜏2

𝛼

= 1∕19, and average cluster size E[ni] =100

5 DISCUSSION

Unexposed clusters (clusters never exposed to intervention) are seen in SW-CRTs in real-world research.25,32 For example,
SW-CRTs that are terminated early can result in clusters that are never exposed to intervention. SW-CRTs with unexposed
clusters somewhat resemble the “optimal design” discussed by Thompson et al36 and Girling and Hemming.4 However,
the analysis of the “optimal design” is based on the mixed effects model which, in addition to horizontal within-cluster
comparisons, also makes vertical within-period comparisons. This differs from the use of fixed effects LSDV model.

The fixed effects LSDV model for estimating the intervention effect in a SW-CRT design uses within-cluster compar-
isons and controls for all unmeasured cluster-level time-invariant confounders.12 The more commonly used mixed effects
models, in contrast, are unable to control for these confounders12,14-17 and struggle with inflated type I error rates when
the number of clusters is small.13,20 However, a potential drawback of the fixed effects LSDV model is its inability to esti-
mate coefficients for variables that have no within-cluster variation.12 Some articles recommend that clusters should only
be modeled as fixed if they are the only clusters that exist or of interest, otherwise the variability of the cluster effects will
be underestimated and results may not be generalizable to unsampled clusters.37 This concern is largely irrelevant in the
context of SW-CRTs where the primary interest is to estimate the coefficient of the intervention effect rather than cluster
effects.26 Furthermore, clusters are often selected due to practical reasons instead of randomly sampled.24 In such cases,
it is appropriate to consider them the only clusters of interest and use the fixed effects LSDV model.
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F I G U R E 7 The impact of including unexposed clusters on properties of the fixed effects LSDV intervention effect estimator when
period effect varies between different clusters. Properties of the intervention effect estimator are presented across number of exposed clusters,
unexposed clusters, and 𝜏2

𝛾

, with fixed true treatment effect δ = −0.1, between-cluster variance 𝜏2
𝛼

= 1∕19, and average cluster size E[ni] =100

Previous publications on fixed effects and other methods that make within-unit comparisons imply that unexposed
units (in this case, clusters) should not be included in the analysis.12,15,28 The SW-CRT of palliative care models that moti-
vated this work did not include the unexposed cluster in its original analysis due to the lack of methodological guidance
at the time.32

In this article, we demonstrated that the inclusion of unexposed clusters in a fixed effects LSDV model is a viable strat-
egy for improving the precision of the intervention effect estimate in a SW-CRT design. We mathematically proved this
in Section 2. Furthermore, we re-analyzed data from the SW-CRT of a novel palliative care model in Section 3 and con-
ducted simulations of a variety of realistic scenarios in Section 4. We found that including unexposed clusters improves
the precision, power, and decreases the RMSE of the fixed effects LSDV intervention effect estimator. These improvements
are unaffected by the absence of true period effects (𝜙j = 0, for all j) in the data generating process and persist provided
the fixed effects LSDV model adjusts for period effects as per standard practice. Furthermore, these improvements per-
sist even if the OLS assumptions of constant residual variance and period effects are violated. It is straightforward to
generalize the results here, on the inclusion of unexposed clusters, to the inclusion of always-exposed clusters (Online
Supplementary Material S3). This may happen, for example, when intervention is provided to a small number of clusters
from the beginning to pilot the logistics of distributing the intervention in a large-scale study.25

Unexposed clusters may be included in the analysis if they arise from the same study population or share the same
underlying pattern of period effects as the exposed clusters. In the example of a trial that was terminated early following
the results of an interim analysis, the unexposed clusters were clusters randomized to receive the intervention in the last
period. Here, the unexposed clusters certainly arise from the same study population and there is strong motivation to
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include them in the analysis. Alternatively, in the palliative care trial case study, reorganization of hospital management
introduced an additional fifth cluster that ran concurrently alongside the other study clusters to serve the existing target
population and reduce the patient load of some of the original clusters.32 There was no expansion of study population
and no change to the case-mix. In this case, we consider it appropriate to include the fifth cluster as an unexposed cluster
in our fixed effects analysis. In contrast, if an unexposed cluster arises from expansion of service coverage, one should
exercise caution and carefully consider the comparability of the new clusters.

The fixed effects LSDV model operates under the assumption that exposed and unexposed clusters have the same
underlying pattern of period effects.33 Currently, there are no standard practices for testing this assumption in the con-
text of fixed effects analyses for SW-CRTs. In the palliative care case study, we elected to test these assumptions using
an ANOVA, AIC, and BIC to determine whether including interaction terms between an unexposed cluster and period
effects improves the model fit. Future research can explore the operating characteristics of these or other methods for the
detection of differences in period effects, and whether a level of difference that is difficult to detect with these methods
can cause any material bias in the point estimation.

In the palliative care case study, the inclusion of the unexposed cluster was shown to reduce the SE and change the
magnitude of the intervention effect estimate. Given that we did not detect any differences in the pattern of period effects
between exposed and unexposed clusters, the inclusion of unexposed clusters is not expected to affect the point estimate
of the intervention effect more than by chance. Although in this case study, the relative change of the point estimates
when including the unexposed cluster was substantial (about 25%), it could be the result of the small absolute value of
the point estimate as the denominator in calculating the relative change. Nevertheless, the absolute difference of the
point estimates when including vs excluding unexposed clusters was small compared to the level of uncertainty in the
point estimates as reflected by the SEs. Notably, our simulations showed that including unexposed clusters did not affect
the unbiasedness of the point estimate of the fixed effects LSDV analysis, even with non-constant period effects between
clusters in the data generating process.

However, our simulation results also revealed that non-constant period effects between clusters resulted in low cov-
erage probability of the fixed effects LSDV intervention effect estimate. The fixed effects LSDV is a useful model for
SW-CRTs when cluster-level confounding is suspected but is susceptible to additional heterogeneity in the period effect.
Thompson et al21 pointed out that the Hussey and Hughes mixed effects model is also susceptible to misspecification of
the period effect and instead recommends a non-parametric vertical within-period estimator when period effect varies
between clusters.21 The final decision as to which model to use ultimately depends on the conditions of the SW-CRT and
where the sources of heterogeneity and confounding lie.

The CONSORT extension to SW-CRTs suggests including the intraclass correlation coefficient (ICC) estimates in
results reporting to help inform future studies.38 Unlike mixed effects models, the fixed effects LSDV model is unable to
automatically estimate the ICC between clusters.17 However, there are alternative ways to estimate the ICC alongside a
fixed effects analysis. For example, researchers can estimate the ICC through a one-way ANOVA of cluster effects during
the first time-period of the SW-CRT when all clusters are still unexposed.39,40 The use of fixed effects analysis for the
estimation of the intervention effect does not preclude the estimation of ICC which can be accomplished with additional
analyses.

In this article, we consider the fixed effects LSDV model for the analysis of continuous outcomes. Recent work by
Ma, Lam and Cheung shows that inclusion of unexposed subjects in the conditional Poisson model, which is equivalent
to a fixed effects Poisson model,41 improves the precision of the exposure effect estimator when the analysis adjusts for
time-varying covariates.30 It is intuitive to assume by extension that the inclusion of unexposed clusters will also improve
the precision of the fixed effects intervention effect estimate in SW-CRTs with discrete and binary outcomes. Future
research is needed to confirm this.

Until now, we have restricted our attention to CRTs. However, the concepts and findings here are applicable to other
research settings. Examples include observational studies of child health, which are susceptible to confounding by family
socio-economic status. As such, fixed effects models have been proposed to study the impact of risk factors that are variable
between children within families and remove confounding by unmeasured family-level covariates.42 If all children in a
family are exposed (or unexposed) to the measured risk factors, they contribute no information to fixed effects models
that do not involve adjustment for child-level covariates. However, such analyses often require adjustment for child-level
covariates, such as age. Based on the observations in the present study, we expect that the inclusion of families that contain
only children exposed (or unexposed) to the measured risk factors may result in a more precise fixed effects exposure
effect estimate when adjusting for time-varying covariates. The magnitude of precision gained in such situations requires
further investigation.
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In conclusion, cross-sectional SW-CRTs may conclude with clusters that are never or always exposed to the inter-
vention of interest in scenarios where a fixed effects LSDV analysis may be preferred. In such cases, it is preferable to
include these clusters in the fixed effects LSDV analysis due to the improvements in precision, power, and RMSE of the
intervention effect estimator.
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