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ABSTRACT
The self-controlled case series is an important method in the studies of the 
safety of biopharmaceutical products. It uses the conditional Poisson model 
to make comparison within persons. In models without adjustment for age 
(or other time-varying covariates), cases who are never exposed to the 
product do not contribute any information to the estimation. We provide 
analytic proof and simulation results that the inclusion of unexposed cases in 
the conditional Poisson model with age adjustment reduces the asymptotic 
variance of the estimator of the exposure effect and increases power. We re- 
analysed a vaccine safety dataset to illustrate.
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1. Introduction

The self-controlled case series is a popular method in the studies of vaccine safety (Whitaker et al. 
2006). It has also been recommended as a major alternative to case–control study design in drug safety 
research using electronic healthcare databases (Schuemie et al. 2019). The estimation of the effect of an 
exposure to a risk factor is based on within-person comparison. Given that a person has experienced 
the outcome event, the method evaluates whether the event occurrence was more likely during the 
person-time exposed or unexposed to the risk factor. Therefore, it has the advantage of being 
unconfounded by time-constant covariates. The method is based on fitting a conditional Poisson 
regression model (Weldeselassie et al. 2011; Whitaker et al. 2006; Xu et al. 2011). The model does not 
require data from persons who have not experienced the outcome event (i.e. non-cases) because they 
have no contribution to the conditional likelihood. The conditional Poisson model is equivalent to the 
fixed effects Poisson model as their likelihoods are proportional (Xu et al. 2011). In drug safety 
research, there is also a large group of methods known as signal detection algorithms, safety data 
mining or proportional reporting analysis (Almenoff et al. 2007; DuMouchel 1999; Harpaz et al. 2012). 
We only mention them in passing as their study design/data source (spontaneous reporting system) 
and research purpose (screening for drug-event combinations) are different from that of the self- 
controlled case series.

Since the estimation of the exposure effect is based on within-person comparison, cases who are 
never exposed during the study period are supposed to contribute no information to the estimation of 
the exposure effect. Only exposure variables that vary within persons should be included in the model 
(Gardiner et al. 2009). However, within-unit comparisons almost always require statistical adjustment 
for age, which is often related to both disease outcomes and medical exposures (Musonda et al. 2008; 
Whitaker et al. 2006; Xu et al. 2012), or some other time-related factors. Such adjustment is seen in 
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SCCS studies of people at different age ranges (e.g., Peach et al. 2021; Whitaker et al. 2006). Inclusion 
of cases who were never exposed during the study period in the conditional Poisson model can help to 
reduce bias arising from confounding by age or other time-varying covariates (Whitaker et al. 2006). 
This has been demonstrated by simulation (Musonda et al. 2008). The inclusion of these cases is 
sensible only if it can be assumed that the underlying pattern of covariate effects is the same for them 
and the other cases.

We identified and reviewed 44 medical studies published in 2020 that used SCCS to evaluate the 
safety/effect of interventions/exposures. (Details of the search and review are provided in Online 
Supplementary Material 1.) Of the 44 studies, 11 did and 22 did not include subjects who were 
unexposed, 9 were “hybrid”, and 2 were indeterminable. Each of the 9 “hybrid” studies involved more 
than one intervention/exposure. Subjects must be exposed to at least one of the interventions/ 
exposures for them to be included in the studies, but they could be included in the analysis of an 
intervention/exposure without having specifically exposed to it.

Most studies did not provide the rationale of the inclusion or exclusion. However, in their 
comments on SCCS, three studies that did not include unexposed subjects explicitly made the 
following statements: “To be included in the SCCS methods, individuals must experience the exposure 
and the outcome of interest” (Duncan et al. 2020), “patients must have both the outcome and the 
exposure of interest” (Aspinall et al. 2020), and “Comparisons are made within individuals rather than 
between individuals. Thus, only those who have experienced both the outcome and the exposure of 
interest are included” (Forbes et al. 2020). Although the SCCS is increasingly popular in medical 
research, there is a need to promote proper understanding of its properties and usage.

For brevity, we will refer to cases who were never exposed and cases who had some exposed person- 
time and some unexposed person-time during their observation periods as “unexposed cases” and 
“exposed cases”, respectively. Without loss of generality, we will consider age as the time-varying 
covariate, but there can be other time-varying covariates such as calendar time or season (Moulton 
et al. 2006; Peach et al. 2021; Whitaker et al. 2006).

While the statistics literature has shown that the inclusion of unexposed cases in the conditional 
Poisson model is beneficial in terms of reducing bias, little attention has been given to the question of 
whether the inclusion can improve the precision of the estimate of the exposure effect. Precision is the 
inverse of the variance of the estimator. In this article, we provide analytic proof that the inclusion can 
improve the precision, demonstrate the impact by simulation, and illustrate the difference by re- 
analysis of a vaccine safety study with and without inclusion of unvaccinated cases.

2. Model, likelihood and variance

2.1. No time-varying covariate

We begin with the simplest scenario that there is only one binary exposure variable and there is no 
time-varying covariate in the model. For the time being, person-time is either exposed or unexposed 
(i.e. before or after the occurrence of an exposure). Suppose there are N cases. Each case’s observation 
period is ai; bið �; i ¼ 1; 2; . . . ;N. Suppose that case i experiences ni events in total within ai; bið �. 
Denote the exposure indicator as k ¼ 1 for an exposed period and k ¼ 0 for an unexposed period.

With the convention that 00 ¼ 1, the conditional Poisson likelihood is: 

L /
YN

i¼1

Y1

k¼0

exp βkð Þτik
P1

k0¼0 exp βk0ð Þτik0

 !nik 
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where τik is the duration of the time case i spent in exposure status k, nik is the number of events that 

occurred in this period, and 
P1

k¼0
nik ¼ ni (Xu et al. 2012, 2011). The parameter β represents the effect of 

the exposure of interest in terms of log incidence rate ratio, also called log relative incidence in safety 
research.

Let l ¼ log Lð Þ be the log-likelihood function: 

l ¼ log Lð Þ ¼
XN

i¼1

X1

k¼0
nik log τikð Þ þ βk½ � �

XN

i¼1
ni log

X1

k0¼0
exp βk0ð Þτik0

 !" #

þ constant:

The second derivative of l with respect to β is 

@2l
@β2 ¼ �

XN

i¼1

niτi0τi1 exp βð Þ
τi0 þ exp βð Þτi1½ �

2 

The inverse of the Fisher information matrix, I βð Þ ¼ � @2l
@β2 , is an estimator of the asymptotic variance: 

Var ~β
� �
¼ I βð Þ½ �

� 1
¼

XN

i¼1

niτi0τi1 exp βð Þ
τi0 þ exp βð Þτi1ð Þ

2

" #� 1

(1) 

If case i is unexposed for the entire observation period, τi1 ¼ 0 (no exposed time) and the case 
contributes no information to the variance estimator. Therefore, in the absence of covariates to adjust 
for, the inclusion of unexposed cases does not affect the variance of the estimator of the exposure 
effect, i.e. Var β̂

� �
¼ Var ~β

� �
, where β̂ and ~β are the estimators of the exposure effect in analysis 

involving exposed cases only and analysis involving all cases, respectively.

2.2. Simplified scenario with a time-varying covariate

Consider a time-varying covariate such as age, withJ þ 1 age intervals over min aið Þ;maxðbiÞð �. Each 
case’s person-time can be partitioned into intervals jointly defined by age and exposure. The likelihood 
becomes: 

L /
YN

i¼1

YJ

j¼0

Y1

k¼0

exp αj þ βk
� �

τijk
PJ

j0¼0
P1

k0¼0 exp αj0 þ βk0
� �

τij0k0

" #nijk

(2) 

where τijk is duration of time case i spent in age interval j with exposure status k, nijk is the number of 

events occurred in this interval, and 
PJ

j¼0

P1

k¼0
nijk ¼ ni. The parameters αj represent age effects for 

intervals j ¼ 1; 2; . . . ; J, relative to the reference age interval 0, with α0 ¼ 0.
The log-likelihood function is: 

l ¼ log Lð Þ

¼
XN

i¼1

XJ

j¼0

X1

k¼0
nijk log τijk

� �
þ αj þ βk

� �
�
XN

i¼1
ni log

XJ

j0¼0

X1

k0¼0
exp αj0 þ βk0
� �

τij0k0

 !" #

þ constant 

We begin with a simplified scenario that the time-varying covariate (age) has two levels, i.e. J ¼ 1. 
The log-likelihood function is 
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l ¼
XN

i¼1
ni00 log τi00ð Þ½ � þ ni01 log τi01ð Þ þ β½ � þ ni10 log τi10ð Þ þ α1½ �

þ ni11 log τi11ð Þ þ α1 þ β½ � �
XN

i¼1
ni log

τi00 þ exp βð Þτi01

þ exp α1ð Þτi10 þ exp α1 þ βð Þτi11

� �� �

The first derivative of l with respect to β is 

@l
@β
¼
XN

i¼1

X1

j¼0
nij1 �

XN

i¼1
ni

exp βð Þτi01 þ exp α1 þ βð Þτi11

τi00 þ exp βð Þτi01 þ exp α1ð Þτi10 þ exp α1 þ βð Þτi11
;

and the first derivative of l with respect to α1 is 

@l
@α1
¼
XN

i¼1

X1

k¼0
ni1k �

XN

i¼1
ni

exp α1ð Þτi10 þ exp α1 þ βð Þτi11

τi00 þ exp βð Þτi01 þ exp α1ð Þτi10 þ exp α1 þ βð Þτi11
:

Without loss of generality, we assume that the first N0 cases are unexposed during the entire follow- 
up. Denote l0 and l1 as the contributions to the log-likelihood by unexposed and exposed persons who 
have experienced the outcome event, respectively, with l ¼l0þl1.

If case i is unexposed during his/her entire observation period, nij1 ¼ 0andτij1 ¼ 0 and for all j, and 
@l0
@β ¼ 0. Therefore, given an estimate for α1, unexposed cases contribute no information to the point 
estimate for the exposure effect. However, 

@l0
@α1
¼
XN0

i¼1
ni10 �

XN0

i¼1

ni exp α1ð Þτi10

τi00 þ exp α1ð Þτi10
¼
XN0

i¼1

ni10τi00 � ni00 exp α1ð Þτi10

τi00 þ exp α1ð Þτi10 

with ni00þni10 > 0andτi00þτi10¼bi� ai > 0. If an unexposed case only has person-time in one age level, 
then either ni10 ¼ 0 \ τi10 ¼ 0ð Þ or ni00 ¼ 0 \ τi00 ¼ 0ð Þ or ni00 ¼ 0 \τi00 ¼ 0ð Þ, making no contri
bution to the point estimate of the age effect, or vice versa.

The second derivative of l with respect to β is 

B ¼
@2l
@β2

¼ �
XN

i¼1
n

expðβÞτi01 þ expðα1 þ βÞτi11

τi00 þ expðβÞτi01 þ expðα1Þτi10 þ expðα1 þ βÞτi11
�

expðβÞτi01 þ expðα1 þ βÞτi11ð Þ
2

τi00 þ expðβÞτi01 þ expðα1Þτi10 þ expðα1 þ βÞτi11ð Þ
2

" #

The second derivative of l with respect to α1 is 

A ¼
@2l
@α2

1

¼ �
XN

i¼1
ni

expðα1Þτi10 þ expðα1 þ βÞτi11

τi00 þ expðβÞτi01 þ expðα1Þτi10 þ expðα1 þ βÞτi11
�

expðα1Þτi10 þ expðα1 þ βÞτi11ð Þ
2

τi00 þ expðβÞτi01 þ expðα1Þτi10 þ expðα1 þ βÞτi11ð Þ
2

" #

and 

D ¼
@2l

@β@α1
¼

@2l
@α1@β

¼ �
XN

i¼1
ni

exp α1 þ βð Þ τi11τi00 � τi01τi10ð Þ

τi00 þ exp βð Þτi01 þ exp α1ð Þτi10 þ exp α1 þ βð Þτi11ð Þ
2

" #

:

Let B ¼ B1 þ B0, A ¼ A1 þ A0, D ¼ D1 þ D0, where B1;A1;D1 are the contribution of exposed cases 
and B0;A0;D0 are the contribution of unexposed cases. Since τi01 ¼ τi11 ¼ 0 for the unexposed cases, 
B0 ¼

@2l0
@β2 ¼ 0 and D0 ¼

@2l0
@β@α1

¼ 0. 

280 X. MA ET AL.



A0 ¼
@2l0
@α2

1
¼ �

XN0

i¼1
ni

exp α1ð Þτi10

τi00 þ exp α1ð Þτi10
�

exp α1ð Þτi10ð Þ
2

τi00 þ exp α1ð Þτi10ð Þ
2

" #

¼
XN0

i¼1
ni

exp α1ð Þτi10ð Þ
2

τi00 þ exp α1ð Þτi10ð Þ
2 �

exp α1ð Þτi10

τi00 þ exp α1ð Þτi10

" #

¼
XN0

i¼1
ni r2

i � ri
� �

where ri ¼
exp α1ð Þτi10

τi00þexp α1ð Þτi10
. Since τi00 � 0and τi10 � 0, it follows that 0 � ri � 1. Furthermore, 

r2
i � ri ¼ ri �

1
2

� �2
� 1

4 � 0.That is A0 � 0 and A ¼ A1 þ A0 � A1. If an unexposed case only has 
person-time in one age level, then either τi10 ¼ 0 or τi00 ¼ 0. That gives either ri ¼ 1 or ri ¼ 0. In 
this case, A0 ¼ 0;A ¼ A1.

The Fisher information matrix is 

I β; α1ð Þ ¼ �

@2l
@β2

@2l
@β @α1

@2l
@α1@β

@2l
@α12

 !

¼ �
B D
D A

� �

The variance-covariance matrix is 

I β; α1ð Þ
� 1
¼

� 1
BA � D2

A � D
� D B

� �

; if BA � D2�0 

Therefore, Var ~β
� �
¼ � A

BA� D2 .
Define a function y xð Þ ¼ � x

bx� d2 . Its first derivative y0 xð Þ ¼ @y xð Þ
@x ¼

d2

bx� d2ð Þ
2 � 0. So y xð Þ � y x0ð Þ if

x � x0. Since A � A1 and B0 ¼ D0 ¼ 0, we have � A
BA� D2 � �

A1
BA1� D2 ¼ �

A1
B1A1� D2

1
. Therefore, 

Var ~β
� �
� Var β̂

� �
. Simulation studies have demonstrated that the exposure effect was more accu

rately estimated by inclusion of the unexposed cases in the adjustment for age effects (Musonda et al. 
2008; Whitaker et al. 2006). If β̂ and ~β differ substantially, one would trust ~β over β̂ and the comparison 

of Var β̂
� �

and Var ~β
� �

is not meaningful.
Note that the analytic proof does not depend on the size of αj. It concerns conditional Poisson 

models that include adjustment for time-varying covariates. The results hold no matter if the time- 
varying covariates have any effects on the outcome event or not.

2.3. Generalizations

For brevity, we have focused on unexposed cases. But the same conclusion can be made for cases who 
are always exposed during the study period. For example, in equation (1), cases who are always 
exposed have τi0 ¼ 0 instead of τi1 ¼ 0. But in either situation, the product τi0τi1 ¼ 0 and there is no 
contribution to the precision of the estimate.

The analysis above has assumed that person-time is classified as either before or after the 
occurrence of an exposure. In other words, the duration of the altered risk level after an exposure is 
indefinite (Musonda et al. 2008; Weldeselassie et al. 2011). In safety investigation, it is quite common 
to assume that the duration is definite, say 28 days in vaccine studies or longer durations in studies of 
repeated drug prescriptions. Afterwards, the risk level returns to the pre-exposure level. In Section 1 of 
Online Supplementary Material 2, we show that the conclusions remain unchanged in the situation of 
the exposure giving rise only to a duration-limited risk interval.

Studies may also consider more than one level of elevated risk after exposure. For example, 
incidence rate ratios may be estimated for the first X days and second X days after exposure as 
compared to the pooled person-time before exposure and 2X days after exposure. In Section 2 of 
Online Supplementary Material 2 we show that the variance of the estimator for the two incidence rate 
ratios based on all cases are smaller than or equal to that based only on exposed cases.
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The above only considered two age intervals and up to two duration-limited risk periods. In 
Section 3 of Online Supplementary Material 2 we provide the proof for three age intervals. In 
Section 4 the proof is generalized to multiple age intervals and multiple duration-limited risk periods.

In the next section, we use simulation to demonstrate the above property in a variety of settings.

3. Simulation study

3.1. Simulation settings

We carried out a simulation study for demonstration of the above analytic findings, adopting some 
simulation methods from a previous work on the conditional Poisson model (Musonda et al. 2008). 
We assumed all subjects were observed for 500 days. We considered sample size of exposed cases n = 
100 or 250. We considered the length of the risk period following exposure to be either 200 days or 
28 days, similar to situations of repeated drug prescriptions or one dose of vaccination, respectively. 
We generated age at exposure from the beta distribution on [0, 500] with mean age 150 days and 
standard deviation 50 days or 100 days. The patterns of age at exposure are shown in Figure 1.

The observation period was partitioned into 5 age intervals (100 days each). Four patterns of age effects 
were considered. The incidence rate ratios, eαj , from the youngest to oldest age intervals were, respectively:

(1) No age effect, i.e., eαj ¼ 1 for all 5 age intervals.
(2) Symmetric age effect: 1, 1.5, 2, 1.5 and 1.
(3) Monotone increasing age effect: 1, 1.5, 2, 2.5, and 3.
(4) Monotone decreasing age effect: 3, 2.5, 2, 1.5, and 1.

The true incidence rate ratio was set to be eβ= 1, 2 or 3. Totally, there were 96 scenarios: 2 levels of 
number of exposed cases, 2 levels of variance of age at exposure, 2 levels of risk intervals, 4 patterns of age 
effect, and 3 levels of incidence rate ratios. Within each scenario, we considered exposed cases only r ¼ 0ð Þ

and 3 levels of augmentation by unexposed cases r ¼ 0:1; 0:2; 0:5ð Þ. The total sample size is n 1þ rð Þ cases.

Figure 1. Two distributions of age at exposure in the simulation study.
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The marginal total number of events per subject was generated using a zero truncated Poisson 

distribution with rate 
P5

j¼1

P2

k¼0
λijkeijk ¼

P5

j¼1

P2

k¼0
exp φi þ αj þ βk 2 � kð Þ
� �

eijk, conditionally on the expo

sure history. Here, eijk is the duration of time subject i spends in age interval j and in risk period k. The 
baseline rate is set at exp φi

� �
¼ 1� 10� 5, thus the event is rare, and with no more than 1% of the cases 

having more than one event during the observation period. Then, we used a multinomial distribution 
to randomly allocate each event with the probability λijkeijkP5

j¼1

P1

k¼0
λijkeijk 

to the age interval and risk period 

for each subject (Musonda et al. 2008). For each given setting, we conducted 10,000 replicates of the 
simulation. In a small number of replicates there was zero event within the risk window (as indicated 
in table footnotes). This mainly occurred in the scenarios with n = 100, eβ ¼ 1 and 28-day risk period. 
They were excluded and the simulation continued until there were 10,000 replicates with non-zero 
events in the risk period.

We present the simulation results on the properties of the maximum conditional likelihood 
estimator of β, having adjusted for age, in terms of Bias, SE, Root Mean Square Error (RMSE), 
Power, and CP, where bias is the mean of the 10,000 estimates minus the true β, SE is the mean of 

10,000 estimated standard errors, RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P10;000

i¼1
β̂i � β
� �2

=10; 000

s

, Power refers to empirical power 

(if β�0) or empirical type 1 error rate (if β ¼ 0) for rejecting the null hypothesis of β ¼ 0 at the two- 
sided significance level of 0.05, and CP is the coverage probability of the 95% confidence interval.

3.2. Simulation results

Table 1 shows the results in scenarios with exp βð Þ ¼ 2:0 (β ¼ 0:693), standard deviation of age at 
exposure = 50 days and 200-day risk period. Across both levels of sample size and four patterns of age 
effect, including the pattern with no age effect αj ¼ 0 " j

� �
, SE and RMSE monotonically decreased 

and power monotonically increase with inclusion of r = 10%, 20% or 50% of unexposed cases. As 
compared to analysis of exposed cases only, the SE declined by about 4–16% with addition of 10–50% 
of unexposed cases. When n = 100 and n = 250, there was 3–15% and 1–3% increase in statistical 
power (absolute value), respectively, as compared to analysis of exposed cases only. There was a small 
reduction in bias in the analysis with inclusion of unexposed cases when n = 100, but practically no 
difference when n = 250. There was practically no difference in CP between the analyses with and 
without inclusion of unexposed cases.

Table 1. Simulation results with exp βð Þ ¼ 2:0 (β ¼ 0:693), standard deviation of age at exposure = 50 days, 200-day risk period, four 
patterns of age effect, number of exposed cases (n) = 100 or 250, and number of unexposed cases (r) = 0% to 50% of n.

Age effect r n = 100 n = 250

Bias SE RMSE Power CP(%) Bias SE RMSE Power CP(%)

No 0% 0.012 0.299 0.303 0.660 95.0 0.007 0.188 0.188 0.969 95.0
10% 0.009 0.284 0.287 0.704 94.9 0.006 0.178 0.179 0.979 95.0
20% 0.008 0.272 0.275 0.738 94.9 0.005 0.171 0.172 0.985 95.2
50% 0.006 0.252 0.254 0.796 95.2 0.004 0.159 0.159 0.994 95.3

Symmetric 0% 0.021 0.297 0.302 0.683 95.1 0.011 0.186 0.187 0.975 95.4
10% 0.020 0.285 0.289 0.717 94.9 0.011 0.179 0.179 0.982 95.3
20% 0.019 0.277 0.280 0.742 95.0 0.010 0.174 0.174 0.986 95.3
50% 0.017 0.261 0.266 0.785 95.3 0.009 0.164 0.164 0.992 94.9

Increasing 0% 0.012 0.304 0.309 0.644 94.8 0.006 0.190 0.193 0.961 95.0
10% 0.011 0.288 0.291 0.689 94.8 0.005 0.180 0.183 0.975 94.9
20% 0.010 0.276 0.280 0.724 94.9 0.004 0.173 0.175 0.981 95.0
50% 0.008 0.255 0.260 0.787 94.7 0.002 0.160 0.162 0.992 95.0

Decreasing 0% 0.017 0.305 0.305 0.645 95.6 0.005 0.191 0.191 0.961 95.0
10% 0.014 0.289 0.291 0.688 95.3 0.005 0.181 0.181 0.975 95.0
20% 0.013 0.277 0.278 0.727 95.4 0.005 0.174 0.173 0.982 95.2
50% 0.011 0.255 0.255 0.791 95.4 0.004 0.161 0.159 0.993 95.1
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Table 2 shows the results in the same setting except that the risk period was 28 days. Similar pattern 
of results was observed, but the improvement in power in relation to increasing number of unexposed 
cases was mild in this set of scenarios, by no more than 4%.

Further simulation results are available in Tables S1 to S10 in Online Supplementary Material 3. 
The findings are qualitatively similar to the above. In addition, when exp βð Þ ¼ 1:0, the empirical type 
1 error rate was almost identical between the analyses with and without inclusion of unexposed cases.

4. Application

We re-analysed the measles, mumps, rubella (MMR) vaccine and meningitis data that Whitaker et al. 
(2006) used to illustrate the self-controlled case series method (https://sccs-studies.info/stata.html; 
accessed 7 August 2020). The study involved 10 cases of meningitis. Based on biological knowledge 
and previous studies, they defined 15–35 days inclusive post-MMR as the elevated risk period due to 
the vaccine, as compared to the time before and after the 15–35 days window as the reference time 
period. Five of the 10 events occurred within the post-MMR risk period. Furthermore, the observa
tions were partitioned into two age intervals, 366–547 days (reference) and 548–730 days (older).

The previous analysis by Whitaker et al. (2006) included all 10 cases, one of whom did not receive MMR 
during the study period. Here, we re-analysed the data and compared the results using all the 10 cases versus 
the 9 exposed cases only.

Without adjustment for age, the standard error (0.671) of the vaccine effect estimate was identical 
in the analysis of all 10 cases and analysis of only the 9 exposed cases. In the analysis with adjustment 
for age using all cases, the standard error for the vaccine effect was 0.708 (Table 3). The SE based only 
on the exposed cases was larger, at 0.730.

Table 2. Simulation results with exp βð Þ ¼ 2:0 (β ¼ 0:693), standard deviation of age at exposure = 50 days, 28-day risk period, four 
patterns of age effect, number of exposed cases (n) = 100 or 250, and number of unexposed cases (r) = 0% to 50% of n.

Age effect r n = 100 * n = 250

Bias SE RMSE Power CP(%) Bias SE RMSE Power CP(%)

No 0% −0.036 0.390 0.405 0.443 95.8 −0.013 0.228 0.230 0.827 95.3
10% −0.038 0.387 0.402 0.448 95.9 −0.004 0.226 0.229 0.838 95.1
20% −0.038 0.384 0.400 0.453 95.8 0.003 0.225 0.228 0.846 94.9
50% −0.040 0.378 0.394 0.462 95.8 0.018 0.221 0.225 0.865 94.6

Symmetric 0% −0.031 0.386 0.396 0.451 95.8 −0.009 0.206 0.208 0.887 95.0
10% −0.033 0.382 0.393 0.457 95.8 −0.009 0.205 0.207 0.891 95.1
20% −0.034 0.380 0.390 0.461 95.9 −0.009 0.204 0.206 0.893 95.1
50% −0.037 0.374 0.385 0.469 95.9 −0.010 0.201 0.203 0.898 95.1

Increasing 0% −0.045 0.458 0.478 0.365 96.2 −0.017 0.265 0.275 0.713 95.1
10% −0.047 0.453 0.472 0.369 96.2 −0.018 0.262 0.272 0.719 95.0
20% −0.049 0.449 0.468 0.371 96.3 −0.018 0.260 0.270 0.724 95.0
50% −0.052 0.441 0.461 0.384 96.2 −0.020 0.256 0.265 0.734 95.1

Decreasing 0% −0.025 0.349 0.361 0.513 95.4 −0.012 0.204 0.205 0.892 95.0
10% −0.025 0.347 0.358 0.521 95.4 −0.012 0.202 0.204 0.896 95.1
20% −0.025 0.345 0.355 0.525 95.4 −0.012 0.201 0.203 0.899 95.1
50% −0.026 0.340 0.351 0.533 95.3 −0.013 0.198 0.200 0.901 95.2

* 3 replicates in the scenario with n= 100 and increasing age effect that had zero event within the risk window were re-generated.

Table 3. Re-analysis of MMR vaccine and meningitis data.

Independent All cases Exposed case only

variables β SE (95% CI) β SE (95% CI)

MMR 2.488 0.708 (1.099 to 3.877) 2.548 0.730 (1.116 to 3.979)
Older age −1.491 1.118 (−3.682 to 0.701) −1.227 1.155 (−3.490 to 1.036)
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5. Discussion

The self-controlled case series is an important method in biomedical research. It is commonly used in 
the studies of the safety of vaccines and drugs. There has been limited guidance on the relevancy of 
inclusion of unexposed cases. The practice in medical studies is variable, and there is a lack of 
transparency in the rationale. In the recent literature, we have seen exclusions based on 
a misunderstanding that unexposed subjects cannot be included (Aspinall et al. 2020; Duncan et al. 
2020; Forbes et al. 2020). Note that the inclusion does not necessarily improve precision. The precision 
gain is realized only if the model adjusts for time-varying covariates. Medical exposure and outcomes 
are often related to time-varying covariates such as age or season. Therefore, the analysis usually 
requires covariate adjustment. A previous methodological study demonstrated that inclusion of 
unexposed cases in covariate-adjusted analysis tended to offer a benefit in terms of bias reduction, 
but the benefit was obvious mainly when the incidence rate ratio was very large and the standard 
deviation of the timing of exposure was very small (Musonda et al. 2008). The previous study did not 
evaluate whether inclusion of unexposed cases might improve precision and power.

In the analytic proof and simulation, we have demonstrated the gain in precision by inclusion of 
unexposed subjects occur when time-varying covariates are included in the model, regardless of 
whether the covariates have any effects on the outcome event or not. In the simulation, we have 
demonstrated the advantage of inclusion of unexposed cases in self-controlled case series with 
covariate-adjustment in terms of precision, root mean squared error and power in a variety of 
scenarios, as well as the absence of disadvantage in terms of coverage probability of 95% confidence 
intervals or type 1 error rate. In simulation settings with a longer risk period, the SE declined 
substantially with addition of unexposed subjects. But when the risk period was 28 days, the reduction 
in SE was much smaller. This reflects that the longer the risk period is, the more likely the older age 
intervals are dominated by exposed person-time. With such strong correlation between the indicator 
variables for age and exposure, the inclusion of unexposed subjects has a strong impact, or vice versa. 
As such, we expect that the inclusion of unexposed subjects is more beneficial in terms of precision and 
power in situations of drug prescriptions that may continue for a substantial duration (see, e.g. 
Duncan et al. 2020; Man et al. 2017) than one-off prescription or vaccination.

From a practical point of view, the case-only methodology is an attractive research strategy because it 
can save the resources for the ascertainment of the exposure status among non-cases. The self-controlled 
case series methodology begins with identifying the cases before identifying their exposure status. 
Having identified the cases, the exposure status (and its timing) needs to be ascertained anyway; there 
is no extra cost to keep unexposed cases in the analysis even if the benefit is small. From the viewpoint of 
precision and power, it is useful to include the unexposed cases in covariate-adjusted analysis.
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