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Abstract. We describe five asymptotically unbiased estimators of intervention
effects on event rates in nonmatched and matched-pair cluster randomized trials,
and we present a bias-corrected version of the estimators for use when the number
of clusters is small. The estimators are the ratio of mean counts (r1), ratio of mean
cluster-level event rates (r2), ratio of event rates (r3), double ratio of counts (r4),
and double ratio of event rates (r5). r1, r2, and r3 estimate the total effect, which
comprises the direct and indirect effects; r4 and r5 estimate the direct effect. We
describe a new command, crtrest, that provides these ratio estimators and their
standard errors in nonmatched and matched-pair cluster randomized trials.
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1 Introduction
The cluster randomized trial (CRT) is an important study design in health and social
science as well as in program evaluation (Hayes and Moulton 2017; Donner and Klar
2000; Imai, King, and Nall 2009). A CRT randomizes clusters of individuals to receive
different interventions. The clusters may be residential communities, schools, families,
and so on, depending on context. All individuals in the same cluster are assigned to
receive the same intervention. The simple form of CRTs, which we refer to as nonmatched
CRTs, randomizes each cluster independently. In contrast, the matched-pair CRT design
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begins with identifying pairs of clusters similar in features, such as disease incidence in
previous years and socioeconomic characteristics. Then, within each pair of clusters, one
cluster is randomized to receive the intervention, and the other receives the alternative.
There are various situations when a CRT is preferred. One example is when a trial that
randomizes individuals carries a significant risk of “contamination”, meaning individuals
assigned not to receive an intervention may actually adopt the intervention as they are
influenced by individuals in their proximity who are allocated to receive it, or vice versa.

Data on outcome events may be collected by passive or active surveillance systems.
The advantage of passive surveillance is that the monetary and opportunity cost of data
collection tends to be lower, making it a popular choice for research in low-to-middle-
income countries (Dron et al. 2021). Passive surveillance methods often determine only
the number of events in a cluster without identifying which individuals in the cluster
experienced the events (Dufault and Jewell 2020). Thus, data analysis is at the cluster
level (Hayes and Moulton 2017). That is, clusters are the units of analysis.

The denominator for calculating event rates is the amount of person-time, which
is sometimes approximated by the population size at midpoint of the trial duration.
The collection of person-time data requires extra operations and resources, such as a
demographic surveillance system or rounds of community surveys. These data may or
may not be available in CRTs that use passive surveillance to enumerate the outcome
events (Dufault and Jewell 2020). The analytic methods have to adapt accordingly.

An intervention may offer a direct effect and an indirect effect on event rates. The
latter may be via, for example, reducing disease transmission in the community (Dron
et al. 2021; Halloran, Longini, and Struchiner 2010). In CRTs, it is common that
only a specific group of the cluster members is eligible to receive the intervention or
its control comparator. For example, in trials of vaccines for prevention of pediatric
infectious diseases, usually only young children in a specific age range are eligible; older
children or adults are not eligible. We refer to them as the target and nontarget groups,
respectively. While only the target group can benefit from the intervention’s direct
effect, both groups may benefit from the indirect effect, if any. The total effect that
benefits the target group comprises the direct and indirect effects. Popular estimators
of intervention effects on event rates in the CRT literature mainly concern the estimation
of the total effect (Ma et al. 2022).

We recently reviewed and evaluated two conventional estimators of incidence-rate
ratio (IRR) for cluster-level analysis of CRTs (Ma et al. 2022). We proposed and evaluated
three new estimators, two of which are estimators of the direct effect and are more
powerful than the conventional estimators in the absence of indirect effect if there is
a high level of heterogeneity between clusters. All five estimators are asymptotically
unbiased. Because CRTs often involve only a handful of clusters per trial arm, we derived
a bias-corrected version of each of the five estimators that we called approximately
unbiased estimators.
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In this article, we introduce the command crtrest, which stands for CRT ratio
estimators. It implements all the aforementioned ratio estimators in Stata. Section 2
describes the estimators. Section 3 presents the crtrest syntax. Section 4 provides two
examples, one for nonmatched CRT and the other for matched-pair CRT, to illustrate
the command.

2 Ratio estimators
Suppose there is a sample dataset of {yijk, pijk : j = 1, 2, . . . , ni; i = 0, 1; k = 0, 1}
from a nonmatched CRT, where yijk and pijk are the number of events and person-time,
respectively, in the kth group of the jth cluster in the ith trial arm in the population;
k = 1 and 0 represent the target and nontarget groups, respectively; and i = 1 and
0 represent intervention and control trial arms, respectively. For matched-pair CRTs,
suppose there are n pairs of clusters (n1 = n0 = n). Within the jth pair of clusters, one
cluster is randomized to receive intervention (i = 1) and the other is the control cluster
(i = 0). The sample dataset additionally contains a matched-pair identifier.

For nonmatched or matched-pair CRTs, define yi = (
∑ni

j=1 yij1)/ni, cij = yij1/pij1,
ci = (

∑ni

j=1 cij)/ni, Ri = (
∑ni

j=1 yij1)/(
∑ni

j=1 pij1), R∗
i = (

∑ni

j=1 yij1)/(
∑ni

j=1 yij0),
R′

ik = (
∑ni

j=1 yijk)/(
∑ni

j=1 pijk), and R†
i = (R′

i1)/(R
′
i0) for i = 0, 1; k,= 0, 1, where

yi is the arithmetic mean of the number of outcome events in the target group in the
ith trial arm; cij is the cluster-level event rate in the target group of the jth cluster in
the ith trial arm and ci is the arithmetic mean of cij ; R∗

i is the ratio of event counts in
the target and nontarget groups in the ith trial arm; R′

ik is a ratio estimate of the event
rate for the kth group in the ith trial arm; and R†

i is the ratio of event-rate estimates
in the target and nontarget groups in the ith trial arm. Note that Ri = R′

i1.

For brevity, in section 2 we focus on nonmatched CRTs and only briefly mention
matched-pair CRTs. Details on the estimators for matched-pair CRTs and on the deriva-
tions and analytic and simulation evaluation of all the estimators can be found in Ma
et al. (2022).

2.1 Asymptotically unbiased estimators

In this section, we describe the asymptotically unbiased estimators and their key fea-
tures. The estimators for nonmatched CRTs, rl (l = 1, 2, 3, 4, 5), are shown in statistical
notation in table 1. r1, r2, and r3 estimate the total effect of the intervention, while r4
and r5 estimate the direct effect.
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Table 1. Estimators of IRR for nonmatched CRTs

Estimators Definition

Ratio of mean counts r1 =
y1
y0

=

∑n1

j=1 y1j1/n1∑n0

j=1 y0j1/n0

Ratio of mean cluster-level event rate r2 =
c1
c0

=

∑n1

j=1 c1j/n1∑n0

j=1 c0j/n0

Ratio of event rates r3 =
R1

R0
=

∑n1

j=1 y1j1/
∑n1

j=1 p1j1∑n0

j=1 y0j1/
∑n0

j=1 p0j1

Double ratio of counts r4 =
R∗

1

R∗
0

=

∑n1

j=1 y1j1/
∑n1

j=1 y1j0∑n0

j=1 y0j1/
∑n0

j=1 y0j0

Double ratio of event rates r5 =
R†

1

R†
0

=

(∑n1
j=1 y1j1∑n1
j=1 p1j1

)
/
(∑n1

j=1 y1j0∑n1
j=1 p1j0

)
(∑n0

j=1 y0j1∑n0
j=1 p0j1

)
/
(∑n0

j=1 y0j0∑n0
j=1 p0j0

)
An estimator of the intervention effect in terms of IRR that uses only event data is

the “ratio of mean counts” (Dufault and Jewell 2020), denoted by r1. It is the ratio of
the arithmetic mean of the number of outcome events per cluster in the intervention
arm to that in the control arm. Despite its simplicity, simulation experiments have
shown that r1 performs and compares well with the two estimators that follow (r2 and
r3) in terms of relative bias, coverage probability, and power, provided that the number
of clusters per trial arm is approximately 30 or higher.

The amount of person-time is usually variable across clusters in CRTs. Typical
statistical practice compares event rates instead of mean number of events between trial
arms. If both the number of events and the person-time are collected for each cluster,
one may calculate cij , an estimate of cluster-level event rate, for each cluster. A popular
estimator of the IRR in the CRT literature is the ratio of the arithmetic mean of the
cluster-level event-rate estimates for the intervention arm to that for the control arm,
r2, as defined in table 1 (Hayes and Moulton 2017; Bennett et al. 2002; Pacheco et al.
2009).

In contrast to the CRT literature, the survey sampling literature does not recommend
using ci to estimate a ratio, because it is known to be biased (Cochran 1977). The survey
sampling literature leads to the estimation of the event rate (in each trial arm) as the
sum of the number of events divided by the sum of person-time over the clusters (in
that trial arm), which is asymptotically unbiased (Cochran 1977). Then an alternative
estimator of IRR is the ratio of these event-rate estimates between the trial arms. We
call this the “ratio of event rates”, denoted by r3 (table 1).
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In passive surveillance, the event data may be enumerated for the nontarget group
in addition to the target group at a small additional cost because the capital cost is
already invested for the target group. We proposed an estimator called the “double ratio
of counts”, denoted by r4, by replacing the sums of person-time in r3 with the sums
of the numbers of events in the nontarget groups (table 1). This estimator is defined
even if the number of events in the nontarget group is zero in some clusters, which is a
realistic situation because the reason that the group is not targeted by the intervention
is usually that it has a relatively low-disease incidence rate. Because both the target
and the nontarget groups may be affected by the indirect effect of an intervention, the
estimator cancels this out and estimates only the direct effect. The contrast of the target
and nontarget groups within each cluster reduces the noise arising from heterogeneity
between clusters. If there is no indirect effect or only a trivial indirect effect, r4 is
more precise (smaller standard error) and more powerful than r2 and r3 when the
heterogeneity between clusters is large (Ma et al. 2022). If a nontrivial indirect effect
is present, the point estimates are not comparable, but the absolute values of the test
statistics, |t(rl)|, for l = 2, 3, or 4 are still comparable in that they all indicate the
probability of rejecting the null hypothesis of the target ratio being 1. In general, the
larger the correlation between the number of events in the target and nontarget group,
corr(yij1, yij0), compared with the correlation between the number of events and person-
time in the target group, corr(yij1, pij1), the more powerful r4 is compared with r2 and
r3. This condition may occur in, for example, diseases like malaria that are highly
influenced by environmental factors.

We also proposed a new estimator called the “double ratio of event rates”, denoted
by r5. It has the ratio of event rates between the target and nontarget groups in
the intervention arm as the numerator and its counterpart in the control arm as the
denominator (table 1). This tends to be more precise and powerful than r4, at the cost
of demanding more data inputs.

Asymptotically unbiased estimators for matched-pair CRTs, rpairedl (l = 1, 2, 3, 4, 5),
are defined similarly (Ma et al. 2022).

2.2 Approximately unbiased estimators

The survey sampling literature about bias in ratio estimators and the mitigation meth-
ods was very much focused on paired observations and on estimators in the form of
rpaired1 , rpaired3 , and rpaired4 (Cochran 1977; Durbin 1959; Rao and Pereira 1968). These
previous works showed that the estimators have a bias of order n−1. The CRT litera-
ture has mainly focused on r2. Its degree of bias appeared to depend on not only the
number of clusters but also the coefficient of variation of the cluster-level event rate,
CV(cij) (Bennett et al. 2002; Pacheco et al. 2009). Previous simulation studies appeared
to have limited the degree of heterogeneity between clusters to a range that is too small
to be realistic (Ma et al. 2022). The number of clusters per trial arm is highly variable
in CRTs, ranging from a few to hundreds. We therefore proposed a bias-corrected ver-
sion for each of the aforementioned estimators so that they can be applied widely. The
general approach is to determine the expectation and therefore bias of a ratio estimator
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and then subtract the bias from the estimator to provide a bias-corrected version of
the estimator (Rao and Pereira 1968; van Kempen and van Vliet 2000). We refer to
this version as an “approximately unbiased estimator”. The approximately unbiased
estimators r∗1 to r∗5 that correspond to the asymptotically unbiased estimators r1 to r5,
respectively, are

r∗1 = r1

{
1− 1

n0
CV2(y0j1)

}
r∗2 = r2

{
1− 1

n0
CV2(c0j)

}
r∗3 = r3

{
1 +

1

n1
CV(y1j1)CV(p1j1)corr(y1j1, p1j1)

+
1

n0
CV(y0j1)CV(p0j1)corr(y0j1, p0j1)−

1

n0
CV2(y0j1)−

1

n1
CV2(p1j1)

}
r∗4 = r4

{
1 +

1

n1
CV(y1j1)CV(y1j0)corr(y1j1, y1j0)

+
1

n0
CV(y0j1)CV(y0j0)corr(y0j1, y0j0)−

1

n0
CV2(y0j1)−

1

n1
CV2(y1j0)

}
r∗5 = r5

(
1 +

1∑
i=0

[
1

ni
{CV(yij1)CV(yij0)corr(yij1, yij0)

+ CV(pij1)CV(pij0)corr(pij1, pij0)}

+

1∑
k=0

1∑
k′=0

(−1)k+k′

ni
CV(yijk)CV(pijk′)corr(yijk, pijk′)

]
− 1

n0
CV2(y0j1)

− 1

n0
CV2(p0j0)−

1

n1
CV2(y1j0)−

1

n1
CV2(p1j1)

)

Their counterparts for matched-pair CRTs can be found in Ma et al. (2022).

2.3 Variances and confidence intervals

In Ma et al. (2022), we showed that Var(r∗l ) = Var(rl) for l = 1, 2, 3, 4, and 5. This
equality between the variances of the approximately unbiased estimators and asymp-
totically unbiased estimators also holds for the estimators for matched-pair CRTs. In
nonmatched CRTs, the variances of r1 to r5 are, respectively,
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Var(r1) =
(
y1
y0

)2{CV2(y1j1)

n1
+

CV2(y0j1)

n0

}
Var(r2) =

(
c1
c0

)2{Var(c1j)
n1c

2
1

+
Var(c0j)
n0c

2
0

}
Var(r3) =

(
R1

R0

)2{Var(R1)

R2
1

+
Var(R0)

R2
0

}
Var(r4) =

(
R∗

1

R∗
0

)2{Var(R∗
1)

R∗2
1

+
Var(R∗

0)

R∗2
0

}

Var(r5) =

(
R†

1

R†
0

)2{
Var(R†

1)

R†2
1

+
Var(R†

0)

R†2
0

}

where Var(R∗
i ) = (R∗2

i /ni){CV2(yij1) + CV2(yij0)− 2CV(yij1)CV(yij0)corr(yij1, yij0)},

Var(Ri) = Var(R′
i1)

Var(R′
ik) =

R′2
ik

ni
{CV2(yijk) + CV2(pijk)− 2CV(yijk)CV(pijk)corr(yijk, pijk)}

Var(R†
i ) = R†2

i

{
Var(R′

i1)

R′2
i1

+
Var(R′

i0)

R′2
i0

− 2cov(R′
i1, R

′
i0)

R′
i1R

′
i0

}
cov(R′

i1, R
′
i0) =

1

nipi·1pi·0
{cov(yij1, yij0) +R′

i1R
′
i0cov(pij1, pij0)

− R′
i0cov(yij1, pij0)−R′

i1cov(yij0, pij1)}

pi·k =

ni∑
j=1

pijk/ni, i = 0, 1; k = 0, 1

For matched-pair CRTs, the formulas for each Var(rpairedl ), l = 1, 2, 3, 4, and 5,
involves subtraction of a (scaled) covariance term; see Ma et al. (2022). Because the
matched-pair design tends to generate positive covariances of the relevant quantities, it
tends to provide smaller variances.

Because the distribution of sample ratios is not normal, for construction of confidence
intervals (CIs), we calculate ln(rl) and ln(r∗l ) ∀ l. With the delta method, Var{ln(rl)} =
Var(rl)/r2l and Var{ln(r∗l )} = Var(rl)/r∗2l ∀ l. CIs are calculated using the t distribution
with n1 + n0 − 2 and n− 1 degrees of freedom for nonmatched and matched-pair CRTs,
respectively (Hayes and Bennett 1999). The CIs are then exponentiated back to the
original scale.

The asymptotic variance estimator of Var(Ri) = Var(
∑ni

j=1 yij1)/(
∑ni

j=1 pij1) is a
component of the formula for Var(r3). This variance estimator is also involved in the
calculation of Var(R∗

i ) and Var(R†
i ), which are then plugged into the estimators of

Var(r4) and Var(r5), respectively. On the one hand, Cochran (1977) demonstrated that



X. Ma and Y. B. Cheung 915

this variance estimator gave a substantial underestimation when the number of obser-
vations is small. On the other hand, he showed that the jackknife method only slightly
overestimated the variance and the overestimation was much reduced with respect to
increase in the number of observations. We proposed an option to use the jackknife
method to estimate Var(Ri), Var(R∗

i ), and Var(R†
i ) and then plug these values into the

calculation of Var{ln(r∗l )}, l = 3, 4, and 5, and their respective CIs. We used r∗l(J), l = 3,
4, and 5, to denote the estimators when used together with this jackknife-based variance
estimation. The same applies to matched-pair CRTs as well. Simulation showed that
this jackknife-based method gave more accurate coverage probability of CIs when the
number of clusters was small (Ma et al. 2022).

3 The crtrest command
3.1 Syntax

crtrest has the following syntax:

crtrest varlist
[

if
] [

in
]
, by(groupvar)

[
match(pairvar) r(#) jack level(#)

]
varlist is a list of variables required for the different estimators. If there is only one

variable specified in varlist, crtrest assumes that the variable is the number of events
in the target group, and it uses the estimator r1. If there are two variables specified
in varlist, by default crtrest assumes that the variables are the number of events and
person-time in the target group, respectively, and uses the estimator r2. If there are
four variables specified in varlist, crtrest assumes that the variables are the number
of events and person-time in the target group and in the nontarget group, respectively,
and it uses the estimator r5. See option r() in section 3.2 for further details.

3.2 Options

by(groupvar) specifies a variable defining the groups. It must be dummy coded 1 for
intervention or exposed and 0 for control or unexposed. by() is required.

match(pairvar) specifies a variable defining pairs of clusters in matched-pair CRTs.

r(#) indicates the estimator; it can be r(1) to r(5), including the asymptotically
unbiased version and the bias-corrected, approximately unbiased version (starred).
r(1) requires only one variable in varlist, representing the number of events in the
target group (y1). r(2) and r(3) require only two variables in varlist, representing
y1 and the person-time in the target group (p1), respectively. r(4) requires only
two variables in varlist, representing the number of events in the target group (y1)
and in the nontarget group (y0), respectively. r(3) and r(4) perform the same
calculation, but the results are labeled differently to reflect the different choices of
denominators and estimands. r(5) requires four variables in varlist, representing
y1, p1, y0, and p0, respectively, where p0 is the person-time in the nontarget group.
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jack is valid only for the approximately unbiased estimators for r(3), r(4), and r(5).
It uses a jackknife plugin for the estimation of the standard error.

level(#) specifies the confidence level for estimating the CI. The default is level(95).

3.3 Stored results

crtrest stores the following in e():

Scalars
e(N) total number of clusters
e(N_1) number of clusters in the intervention or exposed arm
e(N_0) number of clusters in the control or unexposed arm
e(N_Pairs) number of pairs of clusters
e(CIlevel) confidence level (%)
e(df_t) degree of freedom for t distribution

Macros
e(cmd) crtrest
e(type) type of CRTs
e(estimator) name of estimator
e(rname) asymptotically unbiased estimator
e(rnameC) approximately unbiased estimator
e(rnameJ) approximately unbiased estimator with jackknife-based variance
e(matched) name of the variable defining pairs of clusters in matched-pair trials

Matrices
e(r) estimate vector
e(se) standard error vector of ln(estimate)

4 Examples
We illustrate the use of crtrest with two simulated datasets: parallel.dta and
matched.dta. The first dataset, parallel.dta, which was generated to resemble the
nonmatched CRT of seasonal malaria chemoprevention reported in Ma et al. (2022),
contains the variables y1, p1, y0, p0, and group, where the variables y1 and p1 rep-
resent the number of events and person-time in the target group, respectively, and the
variables y0 and p0 represent the number of events and person-time in the nontarget
group, respectively. The group variable defines the intervention groups: 1 for inter-
vention group and 0 for control group. The second dataset, matched.dta, which was
generated to represent a matched-pair CRT, contains the variables y1, p1, y0, p0, group,
and pair. The variable pair defines pairs of clusters in a matched-pair trial.
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We begin with loading the nonmatched CRT dataset and inspecting the data format:

. use parallel

. describe
Contains data from parallel.dta
Observations: 20

Variables: 6 15 Jun 2022 14:03

Variable Storage Display Value
name type format label Variable label

cid float %9.0g cluster id
group byte %10.0g group
y1 float %9.0g counts in target group
y0 float %9.0g counts in non-target group
p1 float %9.0g person-time in target group
p0 float %9.0g person-time in non-target group

Sorted by: cid group
. list in 1/5, noobs

cid group y1 y0 p1 p0

1 0 6 10 1837 1199
2 0 17 22 649 448
3 0 4 8 1283 965
4 0 6 4 1622 1117
5 0 5 12 4594 2897

To implement the ratio of the mean counts estimator, r(1), we use the following
command:

. crtrest y1, by(group)
Non-matched Cluster Randomized Trials
No. of clusters = 20
No. of clusters in the intervention group = 10
No. of clusters in the control group = 10
Ratio of mean counts: r(1)

Estimators Estimate SE(ln[Est.]) t P>|t| [95% Conf.

r(1) .8791209 .4477817 2.233 0.019 .3431501
r*(1) .8313602 .4735062 2.112 0.024 .3074349

Estimators Interval]

r(1) 2.252231
r*(1) 2.24815

This is equivalent to

crtrest y1, by(group) r(1)
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The asymptotically unbiased estimator and approximately unbiased estimator are
labeled as r(1) and r*(1) in the output table, respectively. Because the hypothesis
testing and CIs are first calculated on the log scale, the output table shows the standard
errors of ln(estimate).

To implement the ratio of the mean cluster-level event-rates estimator, r(2), we use
the following command:

. crtrest y1 p1, by(group)
Non-matched Cluster Randomized Trials
No. of clusters = 20
No. of clusters in the intervention group = 10
No. of clusters in the control group = 10
Ratio of mean cluster-level event rates: r(2)

Estimators Estimate SE(ln[Est.]) t P>|t| [95% Conf.

r(2) .4828219 .4523924 2.210 0.020 .1866447
r*(2) .4290171 .5091287 1.964 0.033 .1472095

Estimators Interval]

r(2) 1.248988
r*(2) 1.250297

This is equivalent to

crtrest y1 p1, by(group) r(2)

For the ratio of event rates, r(3), we use the following command:

. crtrest y1 p1, by(group) r(3)
Non-matched Cluster Randomized Trials
No. of clusters = 20
No. of clusters in the intervention group = 10
No. of clusters in the control group = 10
Ratio of event rates: r(3)

Estimators Estimate SE(ln[Est.]) t P>|t| [95% Conf.

r(3) .7077515 .5265257 1.899 0.037 .2341363
r*(3) .6504768 .5728865 1.746 0.049 .1952178

Estimators Interval]

r(3) 2.139404
r*(3) 2.167426
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Specifying the jack option provides the jackknife-based standard error for the ap-
proximately unbiased estimator:

. crtrest y1 p1, by(group) r(3) jack
Non-matched Cluster Randomized Trials
No. of clusters = 20
No. of clusters in the intervention group = 10
No. of clusters in the control group = 10
Ratio of event rates: r(3)

Estimators Estimate SE(ln[Est.]) t P>|t| [95% Conf.

r(3) .7077515 .5265257 1.899 0.037 .2341363
r*(3) .6504768 .5728865 1.746 0.049 .1952178

r*(3)(J) .6504768 .5999041 1.667 0.056 .1844455

Estimators Interval]

r(3) 2.139404
r*(3) 2.167426

r*(3)(J) 2.294012

As expected, according to Cochran (1977), the jackknife-based standard error is larger
than its asymptotic counterpart.

For the double ratio of event rates, r(5), with a jackknife-based standard error, we
use the following command:

. crtrest y1 p1 y0 p0, by(group) jack
Non-matched Cluster Randomized Trials
No. of clusters = 20
No. of clusters in the intervention group = 10
No. of clusters in the control group = 10
Double ratio of event rates: r(5)

Estimators Estimate SE(ln[Est.]) t P>|t| [95% Conf.

r(5) .7784809 .3075215 3.252 0.002 .4079995
r*(5) .7436442 .3219276 3.106 0.003 .3781224

r*(5)(J) .7436442 .3490901 2.865 0.005 .3571485

Estimators Interval]

r(5) 1.485376
r*(5) 1.462507

r*(5)(J) 1.548394

This is equivalent to

crtrest y1 p1 y0 p0, by(group) r(5) jack
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Now we load the matched-pair dataset and inspect the format of the data:

. use matched

. describe
Contains data from matched.dta
Observations: 14

Variables: 6 15 Jun 2022 14:04

Variable Storage Display Value
name type format label Variable label

pair float %9.0g paired cluster id
group byte %10.0g group
y1 float %9.0g counts in target group
y0 float %9.0g counts in non-target group
p1 float %9.0g person-time in target group
p0 float %9.0g person-time in non-target group

Sorted by: pair group
. list in 1/6, noobs separator(6)

pair group y1 y0 p1 p0

1 0 17 22 649 448
1 1 1 1 576 536
2 0 5 2 704 568
2 1 3 0 581 527
3 0 5 12 4594 2897
3 1 4 6 3718 3674

The following command provides the ratio of mean counts estimator for matched-
pair CRTs, r(1):

. crtrest y1, by(group) match(pair)
Matched-pair Cluster Randomized Trials
No. of clusters = 14
No. of pairs of clusters = 7
Ratio of mean counts: r(1)

Estimators Estimate SE(ln[Est.]) t P>|t| [95% Conf.

r(1) .3888889 .5840712 1.712 0.069 .0931418
r*(1) .357504 .6353463 1.574 0.083 .0755285

Estimators Interval]

r(1) 1.623703
r*(1) 1.692197
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For simplicity, in the output table, the asymptotically unbiased estimator and ap-
proximately unbiased estimator are labeled as r(1) and r*(1) without explicitly indi-
cating that they are paired analysis estimators. But the description above the output
table and the stored macro e(type) do indicate that this is an analysis of matched-pair
CRTs.

For the double ratio of counts in matched-pair CRTs, r(4), with a jackknife-based
standard error, we use the following command:

. crtrest y1 y0, by(group) match(pair) r(4) jack
Matched-pair Cluster Randomized Trials
No. of clusters = 14
No. of pairs of clusters = 7
Double ratio of counts: r(4)

Estimators Estimate SE(ln[Est.]) t P>|t| [95% Conf.

r(4) .6416667 .3204982 3.120 0.010 .292902
r*(4) .6604752 .3113713 3.212 0.009 .3082964

r*(4)(J) .6604752 .3436941 2.910 0.013 .2848522

Estimators Interval]

r(4) 1.405713
r*(4) 1.414961

r*(4)(J) 1.531417

5 Conclusion
In this article, we briefly reviewed recent developments in ratio estimators of intervention
effects on event rates in CRTs and described a new command, crtrest. The command
implements the asymptotically unbiased estimators of IRR in cluster-level analysis and
their approximately unbiased counterparts proposed in Ma et al. (2022). Two versions
of the estimators are available for nonmatched and matched-pair CRTs. We illustrated
the use of crtrest through two examples, one for nonmatched CRTs and the other for
matched-pair CRTs.

The strengths of our work are twofold. First, we provide bias-corrected versions
of the five estimators for use when the number of clusters is small. This issue had
not received much attention in the literature of ratio estimators in CRTs. Second, we
propose the use of data from the nontarget group as an alternative to person-time in
the target group in the estimation of (direct) intervention effects, giving estimators r4
and r5. This improves precision and power substantially when the event rate is highly
heterogeneous across clusters. A limitation of the work is that it does not handle covari-
ate adjustment. In nonmatched CRTs, one approach for controlling covariate unbalance
is stratified analysis and pooling of stratum-specific estimates using weights inversely
proportional to stratum-specific variances. But it is not practical to stratify for multiple
covariates, and it may involve categorization of continuous covariates. However, good
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use of study designs such as matched-pair CRT and restricted randomization may reduce
the need for covariate adjustment in the analysis stage (Hayes and Moulton 2017; Imai,
King, and Nall 2009).
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8 Programs and supplemental materials
To install a snapshot of the corresponding software files as they existed at the time of
publication of this article, type

. net sj 22-4

. net install st0695 (to install program files, if available)

. net get st0695 (to install ancillary files, if available)
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