The Importance of Building Physics to Life Cycle Assessment Michael Lacasse, PhD, PEng

Senior Research Officer & Team Leader, Low Carbon Assets through Life Cycle Assessments/ Tem Leader, Facades Systems and Products Construction Research Centre, NRC, Ottawa, Canada

24 October, Building Physics Seminar, Tampere, Finland

National Research Conseil national de Council Canada recherches Canada

Overview / Yhteenveto

- Lecture overview
- Life Cycle (Environmental) Assessment (LCA)
- Durability, longevity and climate change
- Approaches to assessing durability of building assemblies
- Global activities focused on the: rakennusmateriaalien ja komponenttien kestävyys
- Conclusions and Invitation
- Bonus Issues as relate to the "<u>kest</u>ävyys" of ETICS

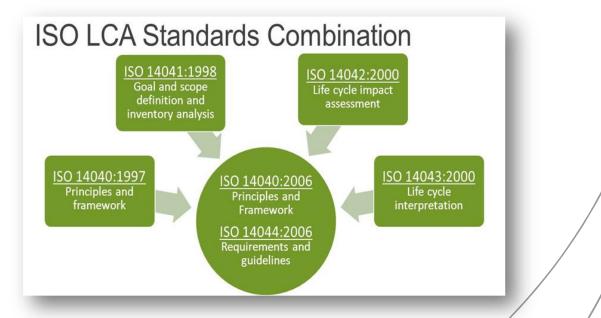
PART 1 — LIFE CYCLE ASSESSMENT (LCA) Life Cycle (Environmental) Assessment

Life Cycle of constructed assets

A1-A3: Product Stage A4-A5: Construction Stage B1-B7: Maintenance & Use Stage


C1-C4: End of Life Stage

D: Beyond Life Cycle Stage


Life Cycle Assessment (LCA)

- Construction emissions over Life Cycle of constructed asset can be categorized by life cycle modules A-D
- LCA is a method of measuring potential environmental impact of a process, product, project.....
- LCA helps practitioners make environmentally focused design choices

Life Cycle Assessment (LCA)

- LCA is a method of measuring potential environmental impact of a process, product, project.....
- LCA helps practitioners make environmentally focused design choices

Life Cycle Assessment (LCA)

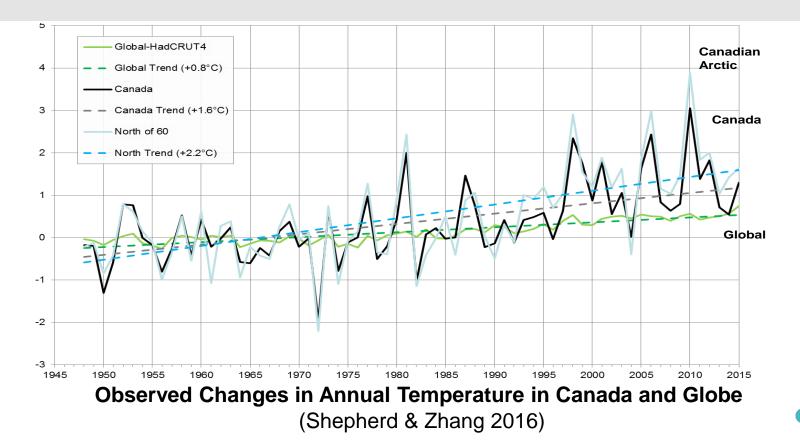
- Global Warming Potential (kgCO₂eq) to end of life stage
- Values of impacts arising from GWP over required (design) service life of constructed asset must be taken into account
- A prolonged service life reduces intensity the GWP impact
- Conversely a shortened life increases intensity the GWP impact

Indicator	Unit	Product (A1-3)	Construction process (A4-5)	Use stage (B1-7)	End of life (C1-4)	Benefits and loads beyond the system boundary (D)
(1) GWP - fossil	kg CO₂ eq					
(2) GWP - biogenic	kg CO₂ eq					
GWP – GHGs (1+2)	kg CO₂ eq					
(3) GWP – land use and land use change	kg CO₂ eq					
GWP – overall (1+2+3)	kg CO₂ eq					
Notes: Impacts referred to the use of 1 m ² o	f useful internal floo	or per year for a defa	ault reference study perio	d of 50 years ¹ .		

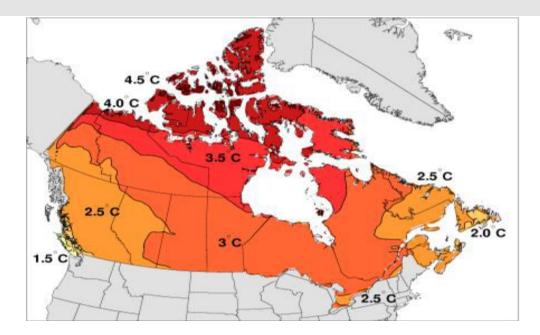
Global Warming Potential for each life cycle stage

PART 2 — DURABILITY, LONGEVITY AND CLIMATE CHANGE

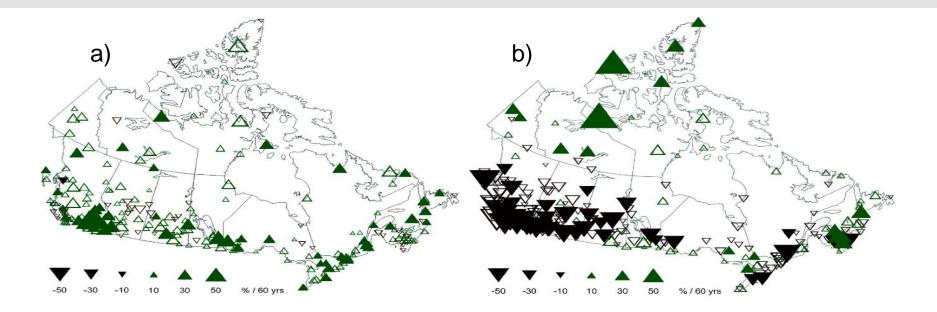
Durability, longevity and climate change


Durability in the context of LCA

- The durability and, in turn, the longevity of a constructed asset, necessarily affects the intensity in GWP and in turn, the Life Cycle Impact Assessment
- Estimating the service life of new constructed assets or the retrofit of existing assets, is of importance in determining the carbon (LCIA) impact of such assets
- This is all the more important given a changing climate


Climate change in Canada

- Annual average surface air temperature over Canada's landmass has warmed by 1.5°C: twice global rate (since 1948)
- Parts of the North have warmed by 2.2°C
- Total annual precipitation in Canada has increased over 1948–2012
- Strong regional variability in climate change
- Increase of frequency and severity of extreme weather events including floods, heat waves, droughts, extreme winds, fires
- Sea level rise increases risk of storm-surge flooding



11

Projected increase in annual average temperature by 2070 (Ouranos 2015)

Observed Annual Precipitation Trends: 1950–2009 a) Rainfall; b) Snowfall (From Mekis & Vincent, 2011)

Climate change can lead to:

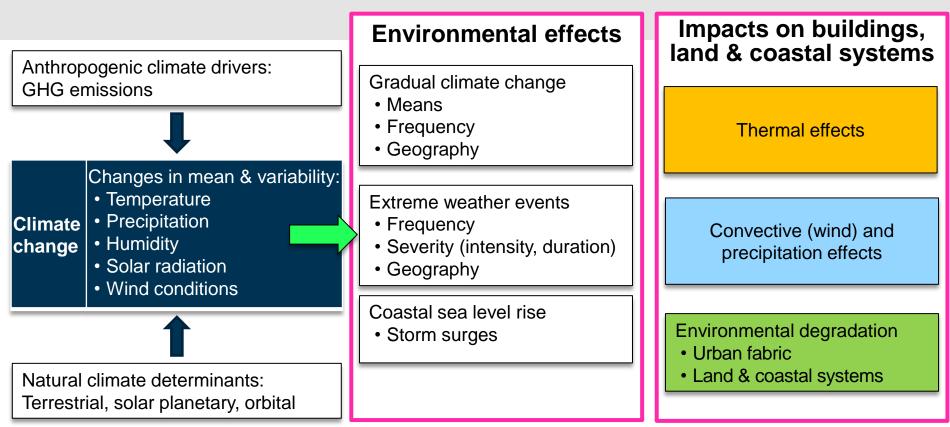
- Increased load and reduced resistance of Infrastructure
- Higher stresses on, and increased risk of failure of infrastructure assets
 Shorter service life of Infrastructure
- Increased risk of loss of life, injuries, illnesses due to Infrastructure failures
- Increase potential liability issues with existing codes and standards (unreliable climatic data)

Cost of extreme weather events

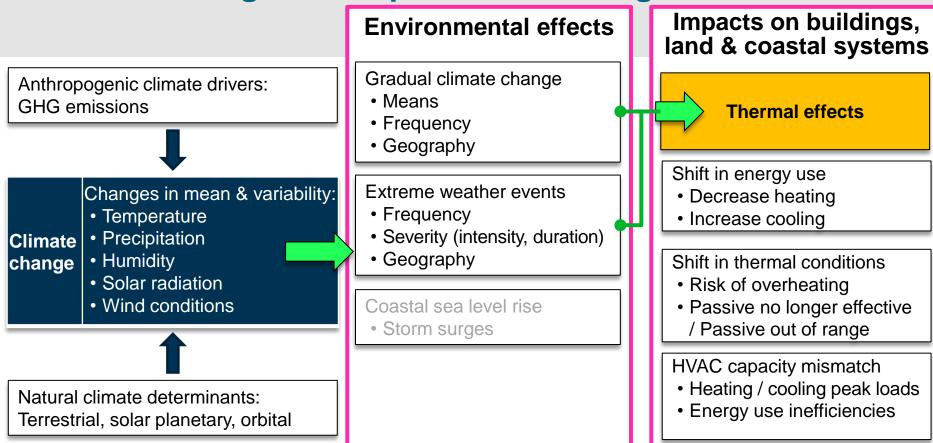
Insured Losses

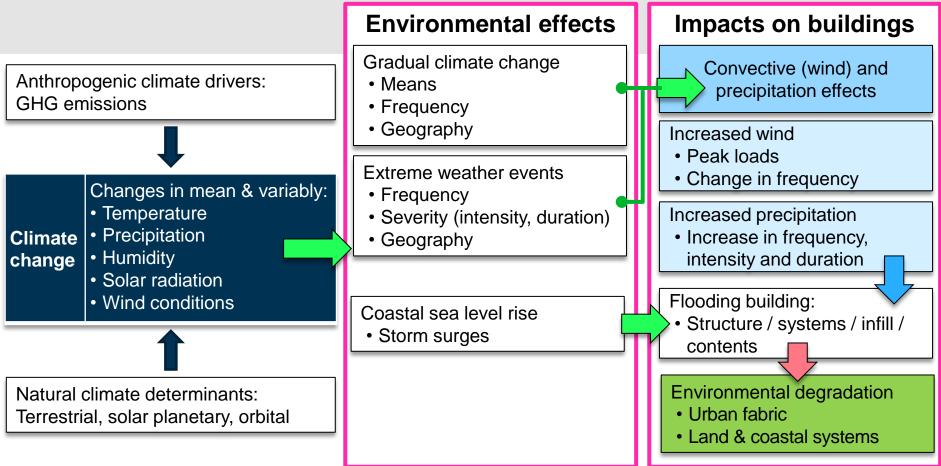
Catastrophic losses in Canada in \$000,000,000, 1983 to 2016

Loss + Loss Adjustment Expenses in 2016 dollars


Estimated Trend Line

Source: IBC, PCS Canada, CatlQ, Swiss re, Munich Re, Deloitte


Source: IBC Fact Book 2017


Climate change and impacts on buildings

Climate change and impacts on buildings

Climate change and impacts on buildings

PART 4 — APPROACHES TO ASSESSING DURABILITY OF BUILDING ASSEMBLIES

Approaches to assessing durability

Assessing durability of building assemblies

- Pertinent standards:
 - ISO 15686-1:2011 Service life planning
 - ISO 13823 General principles on the design of structures for durability
 - BS 7543:2015 Guide to durability of buildings and building elements, products and components
 - **NZBC** B2 COMPLIANCE **Durability**
 - CSA S478:19 Durability of Buildings

Climate resilient buildings – durability

Adaptation — Approach to design & retrofit

- Require methodical approach to assess resilience and long-term performance of building (envelope)
- Use of standard approach
 - **CSA** S478-19 Durability in Buildings references these documents:
 - → ISO 15686-1:2011 Service life planning Part 1: General principles & framework
 - → Guideline on the Design of Durability of Building Envelopes

Guideline on design for durability of building envelopes

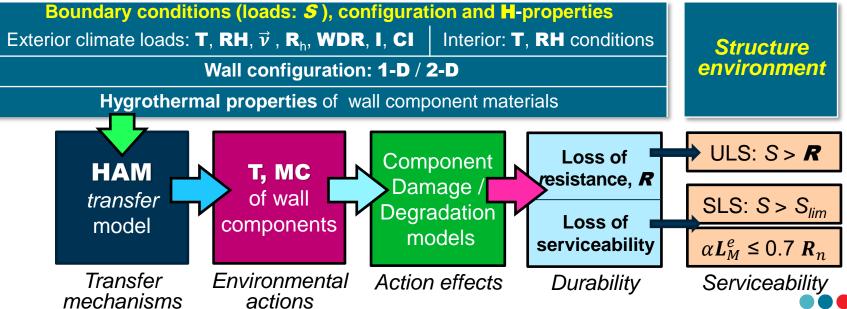
NRC-CRC, Technical Report, CRBCPI-Y2-R19

- Based on: ISO 13823 General principles on the design of structures for durability
- CSA S478-19 § 7 Predicted service life of building elements
 - Use of hygrothermal simulation models for modelling degradation processes
 - Building Physics

 hygrothermal simulation models

Guideline on Design for Durability of Building Envelopes

Michael A. Lacasse, Hua Ge, Mark Hegel, Robert Jutras, Aziz Laouadi, Gary Sturgeon and John Wells


Report: CRBCPI-Y2-R19 12-April-2018

Climate resilient buildings – Design & Retrofit

- Use of → Guideline on the Design of Durability of Building Envelopes
- Guide on use of precepts of Building Physics
 → hygrothermal simulation models
 → provides results from which to estimate durability of building

23

Climate resilient buildings – approach

Use -> Guideline on the Design of Durability of Building Envelopes

Develop reference (baseline) moisture performance of various wall assembly (WA) types for several different locations across Canada

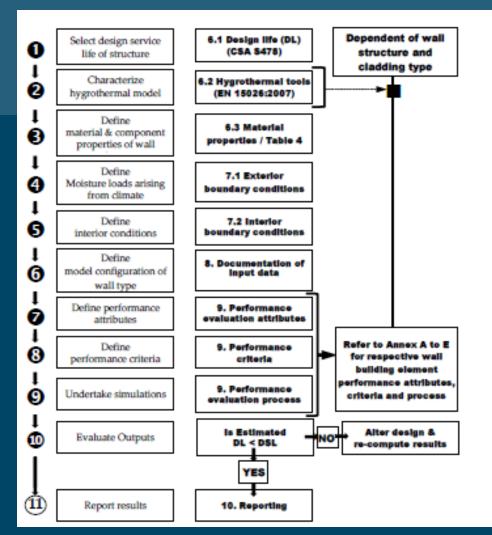
Undertake H-simulations of WAs using:

- Historical climate loads & assess <u>reference</u> moisture
 performance*
- Future projected climate loads & assess moisture performance for all warming scenarios

2

Compare <u>reference</u> moisture performance to that of the moisture performance of WAs subjected to <u>future</u> projected climate loads

*moisture performance as indicated by values of: mould index of building products | wood decay index | masonry freeze-thaw index | metal corrosion index


Climate resilient buildings – approach

Use of -> Guideline on the Design of Durability of Building Envelopes

Compare <u>reference</u> moisture performance, as based on historical climate loads, to that of the moisture performance of **WA**s subjected to <u>future</u> projected climate loads Mitigate significant changes in performance by adaptation of building design to resist future climate loads

*moisture performance as indicated by values of: mould index of building products | wood decay index | masonry freeze-thaw index | metal corrosion index

Guideline on design for durability of building envelopes

Lacasse et al. (2018), NRC-CRC, Technical Report, CRBCPI-Y2-R19

Summary of procedure for completing a durability evaluation

26

Climate resilient buildings –

Adaptation — Approach to design & retrofit

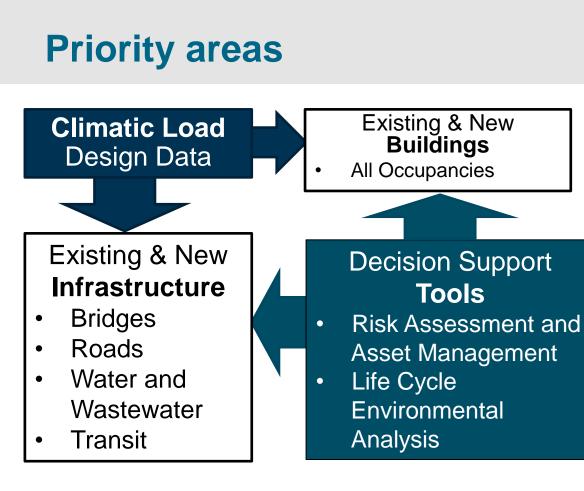
• Use of → Guideline on the Design of Durability of Building Envelopes

Design for durability of building envelope systems or components	ISO 13823:2008 ISO 15686-1:2011
Boundary conditions to which envelope subjected on exterior as well as interior of assembly	ANSI/ASHRAE 160-2009 ISO 15927-3 / ISO 15927-4
Ensure material properties input to H -model consistent with requirements to calculate non-steady-state HAM transfer	DIN EN 15026:2007-07 ASTM E3054/E3054M-16
Undertaking hygrothermal simulations	DIN EN 15026:2007-07 ASTM E3054M-16 ANSI/ASHRAE 160-2009

Climate resilient buildings –

Adaptation — Approach to design & retrofit

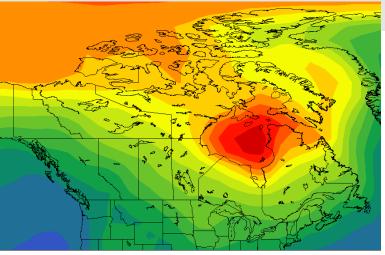
- Use of → Guideline on the Design of Durability of Building Envelopes
- Helps ensure uniformity of input to a defined **H-**model
- Provides consistent means to assess response of building elements on basis of results from simulation and relating response to accepted performance criteria
- Affords a reproducible and demonstrable means of verifying designs for durability of building materials, components and wall assemblies


NRC Climate Resilience Research Initiatives

Ongoing partnership with Infrastructure Canada to integrate climate-resilience into guidance, codes and standards

Climate Resilient Buildings and Core Public Infrastructure Research Initiative (2016-2021)

Climate Resilient Built Environment Research Initiative (2021-2026)



Building climatic data and loads

Updated historic data - Limited provisions ready for 2020 / All data & structural load provisions ready for 2025

Climate extremes: temperature, precipitation, wind & flood

Accounting for uncertainties in climate models & scenarios and in performance of buildings & CPI

Sample map of winter temperature change - ECCC

Key Deliverables

- Development of revised historical climatic data for Canada's National Building Code (NBC), for **design of buildings** and approach for implementation
- Development of climatic data for extreme events
- Projected future climate data for several warming scenarios

PART 5 — GLOBAL ACTIVITIES FOCUSED ON: rakennusmateriaalien ja komponenttien kestävyys

Global activities focused on: rakennusmateriaalien ja komponenttien kestävyys

International Council for Research and Innovation in Building and Construction

CIB W080

Prediction of Service life of building materials and components

CIB W086

Building Pathology

Global activities focused on: rakennusmateriaalien ja komponenttien kestävyys

\leftarrow ISO/TC 59

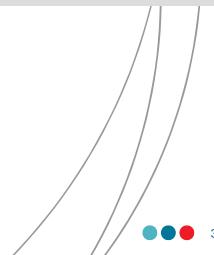
ISO/TC 59/SC 14

Design life

ISO 15686-1

Buildings and constructed assets / Service life planning / Part 1: Concepts, Principles and terminology

About


Secretariat: BSI

Committee Manager: Mr Tom Stack

Chairperson (until end 2025): Michael Lacasse

ISO Technical Programme Manager [<u>TPM</u>]: Dr Anna Caterina Rossi ISO Editorial Manager [<u>EM</u>]: Mrs Yvonne Chen

Creation date: 1997

CONCLUSIONS & INVITATION

Conclusions and Invitation

- Approach to design and retrofit of climate resilient buildings requires methodical approach to assess resilience and long-term performance of building envelope
 - Guideline on the Design of Durability of Building Envelopes
 - Based on durability assessment standards (ISO 13823 / CSA S478)
- Guideline on use of precepts of **Building Physics**, as provided in hygrothermal simulation models, affords results from which to estimate service life (longevity/durability) of building envelope elements
- Estimating the service life of new constructed assets or the retrofit of existing assets, is of importance in determining the Life Cycle Impact Assessment of such assets
- The durability and, in turn, the longevity (service life) of a constructed asset, necessarily affects the intensity in GWP and in turn, the LCIA

Invitation

To the:

17TH International Conference on the Durability of Building Materials & Components (rakennusmateriaalien ja komponenttien kestävyys) In Montreal, Canada, July **2026**

HOSTS - HOST ORGANIZATIONS

primary National agency of the Government of Canada dedicated to science, technology research & development.

Concordia University,

top-ranked university in Canada founded within the last 50 years and among the most innovative in its approach to experiential learning and cross-functional research.

MONTREAL'S ATTRACTIONS



See you in MONTREAL in 2026 for 17DBMC!

00

THANK YOU

Michael Lacasse

Tel. +1 343-550-4260 Michael.Lacasse@nrc-cnrc.gc.ca

National Research Conseil national de Council Canada recherches Canada

Climate resilient buildings – durability

Durability and climate change: implications for service life prediction and the maintainability of buildings

Lacasse, Michael A.; Gaur, Abhishek; Moore, Travis V., Buildings, Vol.: 10(3), Publication date: 2020-03-12

Guideline on design for durability of building envelopes

Lacasse, Michael A.; Ge, Hua; Hegel, Mark; Jutras, Robert; Laouadi, Aziz; Sturgeon, Gary; Wells, John Technical Report, No. NRCC-CONST-56270E, National Research Council of Canada. Construction, Publication date: 2018-04-12, 35 p, DOI:https://doi.org/10.4224/23003983

Approach for assessing the climate resilience of buildings to the effects of hygrothermal loads

Lacasse, M. A.; Defo, M.; Gaur, A.; Moore, T.; Sahyoun, S. Technical Report, No. NRCC-CONST-56269E, National Research Council of Canada. Construction, Publication date: 2018-06-30, 44 p, DOI:https://doi.org/10.4224/23003982

