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Abstract— Natural language is an effective tool for commu-
nication, as information can be expressed in different ways and
at different levels of complexity. Verbal commands, utilized
for instructing robot tasks, can therefor replace traditional
robot programming techniques, and provide a more expressive
means to assign actions and enable collaboration. However, the
challenge of utilizing speech for robot programming is how
actions and targets can be grounded to physical entities in
the world. In addition, to be time-efficient, a balance needs
to be found between fine- and course-grained commands and
natural language phrases. In this work we provide a framework
for instructing tasks to robots by verbal commands. The
framework includes functionalities for single commands to
actions and targets, as well as longer-term sequences of actions,
thereby providing a hierarchical structure to the robot tasks.
Experimental evaluation demonstrates the functionalities of the
framework by human collaboration with a robot in different
tasks, with different levels of complexity. The tools are provided
open-source at https://petim44.github.io/voice-jogger/

I. INTRODUCTION

Speech and natural language is the most common modality
for interaction between humans, due to its expressive nature
and its ability for dialogue. Communication between humans
and robots can benefit as well from such functionalities, and,
as a research field, efforts to achieve this have been ongoing
since several decades [1]. The main challenge in instructing
robots by verbal commands is how natural language can
be easily grounded to the actions of a robot. On the one
hand this can be done by directly matching input commands
to a single robot action or target location in the world
(i.e., lexical grounding), thereby effectively performing tele-
operation. On the other hand, learning-based approaches can
generalize input commands to desired outcomes in the world,
from Large Language Models (LLM), possibly assisted by
visual perception (vision-language pre-training, or VLP).

While lexical grounding provides a one-to-one connection
from commands to actions, learning-based models do not
provide this, making them less reliable to achieve desired
outcomes. In both cases basic robot functionalities are
needed that act in the world, such as movement primitives
in world space, gripper actions and higher-level hierarchical
tasks that execute multiple actions in sequence. Most impor-
tantly, the grounding of (verbal) natural language commands
to robot actions requires manual selection of what robot
actions are needed for what tasks. While LLMs and VLP can
help in extracting relevant information from language and the
scene, they cannot alone solve this grounding problem.
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Fig. 1: Instructing robots by speech requires fine-grained
verbal commands (left) that directly refer to actions and
targets in the workspace. This work presents methods that
extend verbal command instructions to hierarchical tasks.

In this work, we present a framework for verbal commands
as tool to instruct tasks to robots, including automatic speech
recognition and the grounding of commands to robot actions
and targets in the work space (see Fig. 1). Single and multiple
command phrases from natural language enable different
functionalities to be included such as task hierarchies and
task concatenation, without explicitly relying on high-level
task planners. These capabilities are of particular importance
to ensure smooth and efficient collaboration between hu-
man and robot, as continuously using fine-grained language
commands is time-consuming (see Fig. 1). Course-grained
commands enable high-level functionalities and long-term
sequences of actions as demonstrated by our work with
two hierarchical tasks for gear assembly. Our developments
and tools are integrated in a robotic system and numerous
experiments with single commands and long-term tasks
demonstrate the results.

The contributions of this work are as follow:

• Framework for instructing robots by verbal commands
with basic robot functionalities

• Grounding of commands to robot actions and targets in
the scene

• High-level functionalities to support task hierarchies and
concatenation

• Experimental demonstration of the framework with rep-
resentative tasks

https://petim44.github.io/voice-jogger/


II. RELATED WORK

A. Human-Robot Collaboration

Collaboration between human and robot can be supported
in many ways by different technologies [2]. While physical
interaction (e.g., hand-guiding or learning by demonstration)
and visual perception (e.g., for object and gesture detection)
are popular modalities [3], also audio perception in the form
of natural language and speech is common [1]. Success of the
collaboration depends on different factors, such as technical
quality of the tools, and how communication between human
and robot is enabled [4]. In context to this work, the
collaboration between human and robot has the purpose
to provide robot instructions via speech. This means that
communication is only directed from human to robot, and
human verbal commands (i.e., natural language) need to
be recognized and interpreted to be utilized for robot task
execution. Several earlier works have developed capabilities
that enable robots to act on voice commands [1], with
different levels of complexity and even with additional sensor
modalities to support the understanding of the world and
tasks within it.

The related work therefore covers the state of the art
in natural language processing and further divides robotics
approaches in two directions; lexically-grounded methods
and learning-based methods (see Table I).

B. Natural language processing

Speech recognition and natural language processing (NLP)
are two related fields, which both have been propelled
forward recently due to the application of deep learning
models [5], [6]. For this work, we focus on NLP for the
understanding of text and assume that a correct recognition of
speech (by e.g. Vosk [7]) provides natural language (words or
sentences) in textual format. The interpretation of language
by Large Language Models (LLM), such as BERT [8] and
PaLM [9], have demonstrated capabilities including language
understanding and generation, reasoning, and code-related
tasks. As such, to enable robot instructions, they still need
the explicit grounding of verbal commands to actions of the
robot or objects in the scene.

C. Lexical-grounding of robot commands

Commanding robots from natural language by lexical
grounding has been demonstrated for single verbal com-
mands [10], command pairs [11] and short phrases [12].
In most of these cases, words to be recognized and tasks
to executed are predefined, limiting the applicability of the
methods to new situations and new tasks. Verbal commands
have also been utilized to aid in hand-guided task program-
ming [13], thereby effectively enabling multi-modal robot
programming. A list of supported single word commands
can be commanded and, separately, different parameters can
be set via an app to adapt different parameters for robot
motion and skills. Speech interfaces have also been utilized
for modification of robot skills [14], utilizing bi-directional
and high-level communication between human and robot.
Interaction scenarios are developed that show long human

TABLE I: Comparison between two approaches of utilizing
speech in robotics

Lexical grounding Learning-based
Approach Match words directly to

robot actions and targets in
the workspace

Use high-level natural
language instructions to
learn robot actions in the
workspace

Commands Fine-grained Course-grained
Vocabulary Limited Expressive
Actions Short-time Mid- to long-term
Response Fast Slow
References Single commands [12], [13] CLIPort [21]

Command pairs [11] PaLM-E [22]
Command sentences [10] Interactive language [23]
Hierarchical tasks [15], [16]
This work

commands and instructions to modify robot knowledge. In
[15] the learning of complex hierarchical tasks from natural
language instruction is demonstrated, utilizing hierarchical
task networks (HTNs) and queries from robot to human in
case tasks are unknown. Similarly, in [16] behavior trees are
utilized to learn and perform novel complex tasks. As such,
both these approaches focused on the planning of complex
tasks and the learning of task hierarchies and behaviors.
Complex natural language instructions have also been uti-
lized for planning in linear temporal logic formulation [17],
with incomplete world knowledge [18] and for the ordering
[19] and allocation [20] of tasks to be executed.

What all of the mentioned approaches have in common
is that verbal commands directly result in robot actions, or
indirectly through task plans. As hand-crafted algorithms
extract relevant words from input, this means approaches
are typically limited to a predefined vocabularies and action
plans.

D. Learning-based robot commands

Natural language as input for robot tasks has seen re-
cent interest by generating task policies that are language-
conditioned [24]. Even more recent are the inclusion of
other modalities, in addition to natural language, to establish
the link between words and perception [25], [21], [26], for
tasks such as robot object manipulation and motion trajec-
tory generation. While these methods prove well-capable of
transforming natural commands to robot actions, the ques-
tion remains whether such vision-and-language pretraining
improves lexical grounding [27]. This embodiment issue is
addressed in [22] and [28] which directly incorporate real-
world continuous sensor modalities into a LLM (PaLM) to
plan and execute long horizon tasks, i.e., robot planning
on table-top and object manipulation and navigation in
office kitchen environments, respectively. Another example
is embodied BERT (emBERT) [29], which grounds language
instructions against visual observations and actions to take
in an environment, with the aim of home and office nav-
igation. Finally, real-time (i.e., 5Hz) interaction by speech
is presented in [23], which demonstrates the instruction of
multiple robots on table-top setting at the same time.



For both lexical grounding and learning-based approaches,
still a connection needs to be made to robot actions and the
speech commands. While this connection can be learned, as
demonstrated by learning-based approaches, only a person
can verify whether the learned grounding is correct. In case
of high-performance or safety critical tasks (e.g., industry
or search-and-rescue, as compared to household actions by
a service robot) such uncertainty might not be acceptable.
Our lexical-grounding approach is human-coordinated and
aims to enable basic and hierarchical tasks to be commanded
from human to robot, with both fine and course-grained
commands.

III. APPROACH

Our approach divides robot instructions into basic and
hierarchical commands (see Table II), enabling both low-
and high-level commands to be instructed at the same time.
New target poses and tasks can be defined at any time with
any combination of basic and hierarchical commands.

A. Grounding of commands

Grounding of verbal commands is done by connecting
individual words to actions or targets, when they are detected
from automatic speech recognition. Robot actions can be
named with any spoken word and multiple words can refer
to the same action. This similarly applies to robot pose tar-
gets (command save) and new defined (hierarchical) tasks
(command record). Verbal commands are also grounded to
robot motion in case of single direction motion (command
<direction> <value>) and other robot actions (home,
open, close, rotate, etc.).

B. Basic commands

All relevant commands needed to enable a functional robot
are referred to as basic commands. This includes commands
to start and stop the robot system and individual motion
actions of the different components (single direction step
motion, continuous point-to-point motion, gripper motion,
etc.). Depending on the functionality of the command, dif-
ferent instruction combinations can be given as arguments, as
described in Table II. Basic commands can be utilized at any
point during robot operation and can be used for hierarchical
tasks in short- or long-term form.

C. Hierarchical task commands

Hierarchical tasks offer the ordering of robot actions in
different ways (see Table II). For example, task recording
(initiated by command record, terminated by command
finish) enables task hierarchies to be assigned by the
human operator. In its simplest form these contain a list
of actions and commands that are executed in sequence, as
described by few included template commands (i.e., pick,
place, stack, push). Task concatenation is enabled
by the and command, by appending following commands to
a list. Combining multiple robot motion actions is enabled
by the then command, which computes the spoken motion
phrases to one single motion command outcome. For exam-
ple, multiple directional commands in sequence will simply

TABLE II: List of available basic and hierarchical commands
for instructing robot motion and tasks.

Basic commands Explanation
start robot Initialize robot
stop robot Shut-down robot
set mode step Set robot to move in steps
set mode continuous Set robot to move continuous
save position <string> Save robot pose as <string>
position <string> Move robot to pose <string>
<direction> <value> Move robot <value> {up, down,

left, right, back, front}
stop execution Stop robot motion
step size <value> Set robot motion step size
open Open gripper
close Close gripper
rotate <value> Rotate gripper by <value> deg.
home Move robot to home position
Hierarchical commands Explanation
record <string> Start recording commands as <string>
finish Stop recording command sequence
task <string> Execute command sequence <string>
repeat <task> <string> Repetition of <task>, continuously or

specified number of times by <string>
repeat <task> <list> Repetition of <task>, until <list> of

positions is empty
pick <string> pick object from pose <string>
place <string> place object to pose <string>
stack <string> <value> Pick and place on pose <string> with

vertical offset <value>
push <string> <direction> Planar motion at pose <string> start-

ing from <direction>

be added up as a robot pose target (i.e., down then down
then left 200 mm will result in a single robot pose
translation target with the spoken offsets). Task repetition
is enabled by the commands again and repeat, given
suitable input for executing the motion commands (i.e., list
of robot poses and number of repetitions).

New (hierarchical) commands can be easily defined, utiliz-
ing existing commands and by providing desired arguments.
Several typical robot manipulation commands, such as pick-
and-place, wiping and polishing have been developed this
way and are demonstrated individually and as integrated in
two assembly use cases in Section IV.

D. Robot Control Architecture

The architecture for controlling the robot by verbal com-
mands includes modules for command detection, robot mo-
tion planning and robot control as follows. Command detec-
tion recognizes speech commands, adds these to a queue and
publishes them as suitable messages over ROS topics. This
means that the system is continuously listening to audio and
adds new robot tasks when they are received. A high priority
topic is used for the stop command, which allows to bypass
the queue and executes a stopping motion immediately, with
suitable motion profile. In case of teaching positions or task
hierarchies, the system stores them locally in custom XML
format with commanded name, to be used when requested.
The motion planning module relies on MoveIt2 and is
continuously waiting for new motion commands from the
command topics. Finally, robot control utilizes the Franka
Control Interface (FCI) to achieve real-time execution of
control actions.



IV. RESULTS AND DISCUSSION

A. Hardware and implementation

The experimental setup includes a Franka Emika robot
with parallel gripper. Robot motion control utilizes Moveit2
motion planner for generating work space motion and ROS
(ROS.org) handles all communication. Speech of a person is
recorded by a standard microphone (16kHz audio signal),
transmitted to the main PC and passed through a voice
activity detector [30], to identify if the individual audio
packet has human voice or not. A time-delayed filter is
applied on the running stream of audio packets to consider
the natural pause in human speech while speaking. For
speech recognition, Vosk [7] is utilized, which is trained on
The People’s Speech dataset [31]. The model is configured
by filtering out unnecessary words, which are unsuitable
for robot instructions, and by including words and sentence
instructions that reflect the content of speech to be expected.
All packages, tools and videos are open-source available to
replicate our work at https://petim44.github.io/voice-jogger/ .

B. Speech recognition

The accuracy of speech recognition was tested in a clean
and noisy environment with a non-native English speaker
(see Table III). In the clean case, verbal commands are
recognized without any failures. In the noisy environment
the audio contains a background noise similar to a busy
restaurant with other people speaking, which deteriorates the
detection rate slightly. Speech recognition is also evaluated in
the use cases for single and hierarchical tasks, which resulted
in a high success rate (see Table V).

TABLE III: Speech recognition experiment results

Command Clean Noisy
start robot 10/10 10/10
stop robot 10/10 10/10
move up 10/10 10/10
move down 10/10 10/10
move left 10/10 10/10
move right 10/10 08/10
move back 10/10 10/10
move front 10/10 09/10
stop execution 10/10 10/10
step size <value> 10/10 10/10
open tool 10/10 07/10
close tool 10/10 07/10
rotate tool <value> 10/10 10/10
save position <value> 10/10 10/10
load position <value> 10/10 10/10
home 10/10 08/10

C. Single tasks

Single tasks refer to short robot actions, which by def-
inition, can have internal hierarchical structure. This is
demonstrated by a pick and place action as it is composed
into hierarchical tasks by verbal instructions (see Table IV).
From the basic and hierarchical commands available, first
robot end-effector poses are defined (save position
<value>) in combination with intermediate robot motion
and gripper actions (e.g., move, close, open), see left
column in Table II. As a result, these robot poses are utilized

TABLE IV: A pick and place task composed into hierarchical
tasks by verbal instructions. The original query required 27
commands and, with tasks composed to replace step-wise
instructions, the query is narrowed down to 19 commands
and, finally, a single task command.

Commands Task Commands Task
left 300 mm

pick

position pick


one

down 300 mm step size low
down record one
front down (×2)
down back
save position pick down
step size low close
down (×3) step size medium
back up
close Position place
step size medium

}
place

step size low
up down (×3)
left 500 mm open
back 200 mm position place
save position place home
step size low finish
down (×4)
open
step size high
up
home

for motion commands and included in a recorded hierarchical
task, see right column in Table II. This effectively means that
from an initial low-level set of commands (i.e., 27 verbal
commands), human instructions can be narrowed down to 19
commands and, finally, a single task command, to achieve
the same robot action outcome.

Table V describes the results of several single tasks that
are commanded by verbal instructions. During the prepara-
tion phase specific robot poses and motion sequences are
defined as required for the tasks, in few single and multiple
commands. During the execution phase robot actions utilize
these poses and motions for specific objects and target
applications. Repetition of single tasks towards automated
applications is possible as well, by specifying the task and
how often it should be repeated. In case suitable, offsets in
motion commands can be included to achieve more complex
operations, such as wiping and polishing a larger surface.
Fig. 2 depicts several snapshots of the single tasks.

D. Hierarchical tasks

To demonstrate further the capabilities of verbal command
instructions, experiments were also performed with longer-
term tasks with complex assembly steps. This included
the assembly of a helical gear system with six assembly
steps and a planetary gear system with nine assembly
steps. In both cases human verbal instructions guided the
assembly procedure and, in the case of the planetary gear,
also contained three manual and collaborative tasks. Similar
to single tasks, a preparation phase records specific robot
poses and motion sequences, by hand-guiding and verbal
commands. The execution phase entails the actual assembly
task, coordinated by the person with verbal commands. Table
V describes the results of these hierarchical tasks averaged
over ten trials each.

https://petim44.github.io/voice-jogger/


Helical gear assembly: The helical gear consists of four
parts (two gears, front and back plate) and requires six steps
for assembly, executed by the robot. This includes five pick-
and-place actions with different locations and one pushing
action to connect the two gears together. Fig. 4 depicts
several snapshots of the helical gear assembly task.

Planetary gear assembly: The planetary gear consists of
seven major parts (housing, sun gear, three planet gears and
top plate, excluding bolts, nuts and small gears) and requires
nine major steps for assembly, six executed by the robot and
three by a human operator. This includes five pick-and-place
actions with different locations, one holding action and three
human assembly actions (i.e., fixing the housing with four
bolts, fixing planet gears on the sun gear and fixing the top
plate with four bolts). Fig. 3 depicts several snapshots of the
planetary gear assembly task.

In the preparation phase of both assembly cases four
poses are demonstrated to the robot, by utilizing both hand-
guiding and verbal commands. In addition, in the preparation
and execution phases, a high number of speech commands
are used (see Table V), as the assembly steps require fine
adjustments before executing the assembly steps.

E. Discussion

This work demonstrated how verbal commands can in-
struct robot actions to achieve single and hierarchical tasks.
The approach allows for the fast generation of robot actions
and tasks, directly instructed by a person and without the
need for robot programming or training a model (see Table I
and [21], [22]). Compared to offline programming, benefits
can be especially identified when changes (e.g., pick-up loca-
tion, motion sequence) need to be made during or after task
execution. Speech commands allow for direct adaptation of
robot motion parameters, as compared to the more traditional
software practices (i.e., code compilation and evaluation).
In addition, the functionalities for task concatenation enable
long-term sequences of actions to be scheduled, without
explicit task planners and without complex structures for task
dependencies.

Natural language interaction has the benefit of expressivity
[4], as tasks can be instructed by commands selected by
the operator in any desired level of granularity. This means
that accurate motions involving contact can be done more
careful and under supervision of the operator (see Fig.
4f), leading to real-time interaction between human and
robot. To ensure a responsive system, speech recognition is
continuously listening for input commands and all tasks can
be interrupted and overwritten by new tasks, as decided by
the human operator.

Limitations of our work can be identified as well, and
relate to the use of only speech for instructing commands,
requiring human actions and feedback for successful robot
tasks. For example, objects need to be placed on known
or instructed locations and fine-grained verbal instructions
are needed for delicate and contact manipulation actions.
Vision as additional modality would provide a solution to
these limitations, either as single perception model for object

detection [2] or as visual-speech model that combines speech
commands with low-level action sequences [23].

One additional limitation is that no formal planner is
utilized for constructing a task plan. While this keeps the
sequencing of hierarchical tasks simple, it also means that
pre-conditions or dependencies between tasks are not in-
cluded. Moreover, analysis on whether a (hierarchical) task
sequence is suitable or optimal needs to be done by the
human operator.

Failure cases of our work were mostly caused by the
limitations in automatic speech recognition (see Table III
and V). While current state-of-the-art language models are
very robust, still disturbances occurred in case of verbal
accents and words that are similar in sound (e.g., ’four’
and ’for’, ’tool’ and ’two’). These issues were avoided by
intentional clear speech pronunciations and excluding words
from speech recognition that were often mis-recognized. As
can be seen in the videos, few times commands had to be
repeated to achieve correct speech recognition.

Future work will investigate how Large Language Models
(LLMs) can be utilized to assist in interpreting high-level
verbal commands, such that more natural sentences can be
instructed to the robot, instead of a predefined vocabulary.
In addition, LMMs could provide additional functionalities,
such as generating hierarchical tasks or complete assembly
sequences automatically in the most effective and efficient
manner.

V. CONCLUSION

This work presented a framework for instructing robot ac-
tion commands by human natural language. Instructions can
be both fine-grained and provide the functionalities for single
and hierarchical tasks, as specified by a human operator in
real-time. Instructing verbal commands includes a prepara-
tion phase were all required robot poses are demonstrated to
the robot, utilizing both hand-guiding and verbal commands.
In addition, hierarchical tasks can be composed to combine
and concatenate robot actions. The execution phase entails
the actual assembly task, coordinated by the person with
verbal commands. Experiments with several single and hier-
archical assembly tasks demonstrate that verbal commands
can replace traditional robot programming techniques, and
provide a more expressive means to assign robot actions and
enable human-robot collaboration. To provide more natural
language for instructions, future work will investigate how
Large Language Models can be utilized in the framework.
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(a) (b) (c) (d)

Fig. 2: Snapshots of verbally commanded single tasks: before (a) and after (b) the wiping task, picking (c) and placing (d).

(a) (b) (c)

(d) (e) (f)

Fig. 3: Snapshots of the verbally commanded helical gear assembly task: (a) pick back plate with pick part, (b) pick gear
with pick part, (c) place gear with place gear three, (d) push gears together with forward ninety, (e) pick both
gears with close and (f) place top plate with down three.

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 4: Snapshots of the planetary gear assembly task: (a) place motor with hold table distance thirty, (b) pick hous-
ing with pick part, (c) place housing on motor with stack table distance fifty, (d) pick sun gear with pick part,
(e) operator fixes planet gears on sun gear, (f) place sun gear in housing with hold table distance one hundred, (g)
place top plate on housing with place top (h) operator fixes top plate to housing.



TABLE V: Results for speech commanded tasks. The preparation phase aims to define poses and record task sequences, by
both verbal commands and hand-guiding. The execution phase entails the actual task, coordinated by the person with verbal
commands. Results for both hierarchical tasks were obtained from ten trials.

Single tasks Hierarchical tasks

Pick Place Pick & Place Wipe Polish Helical gear
assembly

Planetary gear
assembly

Preparation phase
Prerecorded poses 1 1 3 3 2 4 4
No. of commands
(single, multiple)

12
(8/4)

11
(6/5)

27
(16/11)

22
(16/6)

5
(2/3)

44
(15/21)

34
(11/20)

Speech recognition succes rate 12/12
100%

11/11
100%

27/27
100%

22/22
100%

5/5
100%

36/44
82%

31/34
91%

Duration 0:45 0:30 1:28 1:26 0:36 6:12 3:14
Execution phase

No. of automated steps 1/1 1/1 2/2 1/1 1/1 6/6 6/8
No. of commands

(single/multiple)
6

(4/2)
6

(4/2)
17

(11/6)
6

(2/3)
3

(1/2)
55

(21/26)
65

(25/28)

Speech recognition succes rate 6/6
100%

6/6
100%

17/17
100%

5/6
83%

3/3
100%

46/55
83%

53/65
82%

Duration 0:23 0:22 1:06 2:20 0:30 4:18 8:50
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