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Abstract—Deep learning requires large amounts of data, and
a well-defined pipeline for labeling and augmentation. Current
solutions support numerous computer vision tasks with dedicated
annotation types and formats, such as bounding boxes, polygons,
and key points. These annotations can be combined into a
single data format to benefit approaches such as multi-task
models. However, to our knowledge, no available labeling tool
supports the export functionality for a combined benchmark
format, and no augmentation library supports transformations
for the combination of all. In this work, these functionalities
are presented, with visual data annotation and augmentation
to train a multi-task model (object detection, segmentation,
and key point extraction). The tools are demonstrated in two
robot perception use cases. For more details, please visit https:
//gaurangsharma18.github.io/website/MultiLabel/index.html.

Index Terms—Multi-task models, image annotation and aug-
mentation, object detection and segmentation, keypoint detection

I. INTRODUCTION

Advancements in deep learning have helped to address
numerous problems in different domains (e.g., robotics [1],
medicine [2] and agriculture [3]). Perception in particular has
been of major focus, where single purpose models have been
optimized and fine-tuned for one specific task at hand [4].
More recently also multi-task models have been developed
[5], where a shared model concurrently learns multiple tasks.
A fundamental aspect of these models is to increase data
efficiency, reduce overfitting, and enable quick learning due
to the use of auxiliary information. They use a unified sin-
gle backbone structure having multiple descriptive heads to
address technical computer vision challenges like boundary
detection, semantic segmentation, object detection, etc. To
effectively utilize multi-task models, multi-label annotations
should be supported by the framework. This implies that
images and the objects inside them can be annotated with
multiple different labels (e.g., bounding boxes, polygons and
key points), to be used for learning different tasks and thus
generate multiple outputs. Compared to single-task models this
is less computationally expensive and requires less annotated
records.

Fig. 1 depicts this visually in an object detection problem.
Two objects are annotated and correctly detected, however,

Project funding was received from EU’s Horizon 2020 research and
innovation programme, grant no. 871449 (OpenDR) and 871252 (METRICS).

Fig. 1: Motivation for multi-task detection models. Single-task
models can detect an object (bounding box), but cannot verify
whether their orientation is correct. Multi-task models can
provide additional information from different model outputs.
In this case key points (three blue points) indicate a correct
(green box) and incorrect (red box) object placement.

in this context, the lower object is incorrectly placed. From
detection or segmentation alone, this cannot be determined,
yet with the estimated key points as additional information
(i.e., three blue points), incorrect placement can be detected.
Existing labeling and annotation solutions [6] do not provide
the combined annotation export functionality, which results in
solutions that combine several export formats to accomplish a
common task. This served as motivation for the development
of a novel data pipeline to provide domain-specific annotation
and augmentation strategies. Best-of-breed libraries such as
Albumentation [7] and Label Studio [8] are integrated to create
a generic data generation solution for training deep learning
models. Our developments are evaluated by applications in
object detection, object configuration estimation and depth
estimation. In this work, our contributions are:

1) A novel pipeline that enables labeling of image datasets
with different annotations and formats

2) The augmentation of this dataset without conversion to
different formats

3) The validation of results in two industrial use cases with
different computer vision tasks
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II. RELATED WORK

A. Multi-task Learning

Multi-task learning [5] in the field of computer vision has
shown recent success with methods such as Cross-Stitch [9]
and UberNet [10]. As comparison, single-task models are more
expensive to train and require a larger amount of annotated
data than multi-task models. Moreover, knowing which tasks
should be trained together could aid in improving prediction
quality and acting as a preventative measure against the oc-
currence of negative transfer [11]. Performance improvement
of a specific task can thus lead to performance degradation
of other tasks [12]. Currently, libraries such as YOLOR [13]
and YOLOv7 [14] provide configuration features to facilitate
multi-task learning.

B. Image Annotation and Storing Formats

Labeling data is a critical component for deep learning as it
provides the ground truth for estimating errors. Incorrectly la-
beled datasets lead to poor training and higher validation losses
[15]. Nowadays, there are several machine learning based
tools available that speed up the automatic labeling process
and reduce human labor and time. MS COCO [16], PASCAL
VOC [17], and YOLO are some commonly used benchmarks
with different storage format styles. MS COCO is a rich
(.json) format that offers a large variety of annotation storing
structures. PASCAL VOC, on the other hand, supports a (.xml)
structure that is useful for detection and segmentation tasks but
has limitations in supporting key points. YOLO models accept
(.txt) file format for detection tasks, however, YOLOv7 [14]
accepts polygon segmentation and key point representations
as well. While numerous labeling tools are available, each
provides support for different export formats and annotation
types 1. For example, only a few tools offer direct labeling
options for polygon segmentation, bounding boxes and key
points simultaneously. And when the opportunity is provided,
only a combined JSON export format is available, thereby not
directly supporting state-of-the-art deep learning libraries. As
a result, custom data loaders need to be developed to enable
library-specific data formats.

C. Image Augmentation

Data augmentation is a form of data expansion that can
improve model performance by assisting in its generalization,
robustness and convergence. While augmentation is a well-
known approach, libraries such as TensorFlow [18] and Py-
Torch [19] offer limited transformation strategies. Advanced
libraries like Albumentations [7] provide a diverse range of
transformations but currently lack in the transformation of a
single benchmark format comprising polygons, keypoints, and
bounding boxes simultaneously. Moreover, if custom and com-
plex transformations are required, then libraries like OpenCV
[20] are utilized for basic image manipulation algorithms.

1Website: https://gaurangsharma18.github.io/website/MultiLabel/index.html

D. Object detection and Pose estimation

Traditionally, keypoint estimation, segmentation, and object
detection were considered separate problems. The solution for
object detection evolved in the last 20 years from hand-crafted
features to deformable transformers [21]. Research on segmen-
tation started with thresholding and later led to methods such
as semantic, instance, and panoptic segmentation. On the other
hand, local features, called keypoints, became popular through
corner and edge detectors [22], and today there are several
ways to predict them, including Faster R-CNN [23], which is
based on local keypoints. In the field of robotics and computer
vision, segmentation masks are used to predict keypoints, as
presented in [24]. Recently, combinations of both to predict
human and object poses is addressed by [25]. In this, COCO
is used as the primary format, emphasizing its relevance.

III. METHODOLOGY

In this section, we present our methodology which enables
the annotation of images with multiple labels in multiple
formats and the export of these in a generic format, for training
a multi-task detection model.

A. Architecture

The multi-task architecture of ResNet-50 FPN Keypoint
R-CNN [26] supports the combined data annotations and
is utilized for training the detection model1. The output of
the model contains all three detection formats, for object
recognition, segmentation and feature extraction at the same
time.

B. Data Annotation

Our pipeline starts with the image annotation of polygons,
key points and bounding boxes in Label Studio. As Label
Studio does not provide the functionality for simultaneously
annotating features for polygons and key points, our approach
updates polygon configurations by adding a key points con-
figuration script to the user interface.Bounding boxes are
extracted from the polygon annotations by selecting the outer
bounds of the polygon coordinates. Following, all annotations
are exported into a JSON-min format and converted into
COCO format, containing all three data annotation types in
a single output format.

C. Data Augmentation

Tools such as Albumentations [7] offer a wide range of im-
age transformations. However, it does not offer augmentation
support for polygon and run-length encoding COCO formats,
limiting the support for an integrated augmentation strategy.
To enable the augmentation of multi-label annotated data,
such as bounding boxes, key points and COCO segmentation
formats, the following steps are performed. First, the combined
data (in COCO format) is loaded and extracted into separate
arrays, such as bounding boxes, key points, area, etc. Second,
polygons are converted to key points and appended to a
key point array. Third, the conversion of (x,y) key points
to (x,y,v) is done to maintain COCO standards, followed by
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TABLE I: Frame rate and memory usage comparison between
single- and multi-task models.

Model Output Inference
(FPS)

Memory
(MB)

Faster R-CNN BB, class 11.1 ∼ 350
Mask R-CNN Mask, BB, class 10.5 ∼ 350
Keypoint R-CNN Kps, BB, class 9.4 ∼ 350
Multi-task model Mask, kps, BB, class 8.7 ∼ 500
Mask + keypoint
(in parallel) Mask, kps, BB, class 4.8 ∼ 700

appending invisible key points to keep the number of labeled
key points the same. Dataset augmentation is then performed
using Albumentation’s key point transformation strategy, after
which the key points are converted back to polygons. As a
result, this procedure enables the transformation of COCO
polygon format by the Albumentation library.

IV. RESULTS AND DISCUSSION

This section presents the results of our multi-label anno-
tation pipeline, its detection results and a discussion on its
limitations.

A. Practical Use Cases and System Integration

The use cases aim to detect different objects for automation
purposes. Two assembly sets are selected including a diesel
engine and a planetary gearbox, and their internal parts (e.g.,
rocker arms, pushrods, bolts, gears, housing, etc.). The diesel
engine [27] and planetary gearbox [28] datasets contain 195
and 150 RGB images, respectively, manually annotated by
drawing polygons and labeling key points (see Fig. 2a and
2c). Augmentation is then performed on the annotated data
by different transformation strategies, completing datasets
of 280,000 and 170,000 images. Training of the multi-task
models followed typical training and evaluation steps [26]
with hyper-parameters such as momentum, weight decay, and
regularization to achieve loss convergence in about 2000
epochs. The images were captured with an Intel Realsense
D435 camera. All tools are open-source available from the
dataset documentations [27], [28].

B. Object and Key point Detection

Fig. 2b and 2d present the output of the trained multi-task
models on the two use cases with results for object detection
and segmentation, and key point estimations. This demon-
strates that a single multi-task model can utilize multiple data
annotation formats as part of the dataset, train a model and
achieve successful detection outputs. On average, the detection
confidence is over 90 percent. Furthermore, as main beneficial
outcome Table I presents that the achieved frame rate of the
multi-task model is higher than running multiple models in
parallel. For high-resolution camera input (1280×720), the
difference is almost double, i.e., 8.7 FPS versus 4.8 FPS,
respectively. Likewise, the memory requirements for a multi-
task model is less than running multiple single-task models in
parallel (i.e., 500 MB vs 700 MB).

(a) (b)

(c) (d)

Fig. 2: Results for the Diesel engine (top row) and planetary
gear (bottom row) datasets. (a) and (c) depict image annota-
tions with polygons and key points. (b) and (d) depict the
results of the trained multi-task model (bounding box and
segmentation mask, and red key points).

C. Object Configuration and Depth Estimation

Two further functionalities are developed to demonstrate the
use of multiple detection format outputs from the multi-task
model. These are object configuration and depth estimation,
based on the object segmentation masks and key points,
respectively. Segmentation masks generated by the multi-task
model can be used to determine rocker arm orientations with
respect to the image, with the 2nd order moment of the mask.
The three estimated key points on the rocker arm then verify
correct configuration of the rocker arm object with respect
to the engine. The process for finding the outer side for the
correct configuration is to minimize the axis of the smallest
2nd order moment, then apply a cross-product between the
axis coordinates and predicted key points. The one key point
with an opposite sign to the others indicates the outer side.
Fig. 1 illustrates the correct orientation of the rocker arm on
the engine and verifies (in)correct placement.

To estimate the depth of the rocker arm target, with respect
to the camera, two methods were considered: by segmentation
mask or by key points (see Fig. 2b). In both cases the
depth value from corresponding RGB pixel coordinates are
retrieved from a depth camera (Intel Realsense D435). For
a segmentation mask, the entire mask area as depth range
is taken and an average depth value is returned, and for a
key point, a single depth value is returned. The key point
approach provides 10 times less difference in depth range (i.e.,
468 ± 5mm) as compared to the segmentation mask, and is
therefore found to be more reliable.

D. Discussion

The proposed approach enables images to be annotated by
multiple different labels, including bounding boxes, polygons
and key points, during a single annotation step, and store the
result in a single convenient format (COCO). The annotations



are then all included in the same data augmentation process
to collect a dataset utilized as input for training a multi-task
model. In effect, this provides a single model with multiple
detection outputs in different detection formats (bounding box,
segmentation masks and key points). Compared to single-task
models that only consider single annotation format input and
detection output, the following benefits are identified. 1. Time-
saving for image annotation and augmentation. All annotations
can be done in a single image, without changing any formats
for different annotation types. For example, in case of a single
task-model, one image would need to be annotated three times
separately for three different annotation types. 2. Memory
space requirements saving in model training. As only a single
multi-task model needs to be trained instead of multiple single-
task models, size of the model is reduced. 3. Combining
detection outputs. Detection modalities from the multi-task
model can be combined to solve additional detection tasks, not
directly provided by the model. For example, depth and object
configuration from key points as shown by our use cases, or
other post-prediction applications such as boundary or grasp
pose detection, or the estimation of object properties.

A current limitation of the annotation pipeline is that it relies
on existing annotation (Label Studio [8]) and augmentation
(Albumentations [7]) tools. While these tools can be used
under an open source license, access and support might change
over time. Another limitation is that, still, annotation is a
time-consuming step in the process of generating a learning-
based detection model. Selection of which data to annotate
and in which format (e.g., depth from pixel masks or key
points) requires manual decisions and an iterative process to
select a best outcome for the tasks. Automated and interactive
annotation (e.g., based on machine learning [15]) and semi-
automated, interactive image annotation for visual detection
exist [29], but are still in early stages of research. This is
a natural next-step in developing assistive tools for model
training and planned as future work.

V. CONCLUSION

Learning-based multi-task models require suitable tools for
the collection and annotation of data, especially when data
needs multiple labels. In this work we proposed a single frame-
work that collects and annotates all required labels (bounding
boxes, polygons and key points) from a single image and stores
it as a single benchmark format (COCO). Augmentation can
then utilize this single format to generate a full dataset. The
approach is validated with two use cases, where three different
annotation types are needed per image. Results show that
multi-task models provide benefits with respect to inference
time and memory usage as compared to multiple single-task
models. In addition, results show that multi-task models allow
to combine detection outputs and solve additional detection
tasks from a single model, such as the estimation of depth
and object configuration.
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