

Latest research activities in Coating technologies focusing on thermal spraying

Associate Professor Heli Koivuluoto

Tampere University Materials Science and Environmental Engineering Coating Technologies

14th TWC International Wear Seminar - New Insights into Materials Science

Coating Technologies – Research Group

Research focuses on coating development with high properties and performances for harsh conditions such as icing, corrosion and wear as well as additive manufacturing. Key coating technologies are thermal spraying and cold spraying.

"We are developing future coatings by starting from material optimization through coating processing to final performance towards more sustainable future."

Group members:

- Ruqaya Khammas, Reza Jafari, Betul Aktas, Razieh Alikhanifaradonbeh (PhD researchers)
- Niklas Kandelin (Project researcher)
- Eero Helmi, Pentti Kalliotiura, Ahmed Tariq, Kamil Khan (Master's thesis workers)
- Thermal spray operators: Jarkko Lehti, Anssi Metsähonkala

Coating Technologies – Research Group

Project examples:

- 2023-2027: Refurbishment and additive manufacturing accomplished by kinetic deposition, RE-MAKE, EU/HORIZON/MSCA-DN
- 2023-2025: Offshore Wind Turbine Farms, OFFwind, EU/Interreg/Aurora
- 2022-2025: Computationally aided systems engineering for marine advanced technology for the environment, CASEMATE, Business Finland
- 2020-2025: Sustainable Smart De-Icing by Surface Engineering of Acoustic Waves, SoundOfIce, EU/H2020/FET-OPEN
- 2019-2020: Cold spraying for harsh material repairs, MATINE, national funding
- 2018- Service research for companies

Research topics

Coating technologies

- New potential applications
- Functional coatings
- Additive manufacturing
- Repair and restoration
- Thermal spraying
- Cold spraying

- Developing research area
- De-icing and anti-icing
- Icephobic coatings and surfaces
- New applications

- Multifunctionality
- Energy and eco efficiency

14th TWC International Wear Seminar - New Insights into Materials Science

Heli Koivuluoto

12/12/2023 | 4

Thermal spraying

- Wide range of coating and substrate materials: Metals, alloys, hardmetals, ceramics, plastics and composites
- High deposition rate
- Good coating properties
- Potential of thermally sprayed coatings
 - Large material selection
 - Industrial scale coating manufacturing process for large areas
 - Onsite spraying, manual and automatized processes

Structure and surface modifications

Color tailoring by feedstock

Thermal spraying

Key research areas

- Processing and manufacturing of coatings and surfaces by thermal spraying
- Material development and tailoring, novel coatings
- Requirements and performance

Thermal spraying

- Flame spraying, high velocity flame spraying (HVOF, HVAF) and plasma spraying
- Polymers, hardmetals, metals, ceramics and composites
- Functional coatings, corrosion and wear protection
- Coatings for harsh conditions (e.g., icing)

Latest publication:

R. Cortés, M.A. Garrido-Maneiro, H. Koivuluoto, G. Bolelli, S. Morelli, V. Testa, L. Lusvarghi, J. Kondas, P. Poza, Local wear resistance of Inconel 625 coatings processed by different thermal techniques: A comparative study, *Surface and Coatings Technology*, 2023, 470, 129831, doi: 10.1016/j.surfcoat.2023.129831

10⁻³ (mm³ · N⁻¹ · m⁻¹)

Cold spraying

LPCS Cu on Al

14th TWC International Wear Seminar - New Insights into Materials Science

Cold spraying

Key research areas

- Processing and manufacturing of coatings and surfaces by thermal spraying
- Multi-material solutions, additive manufacturing
- Requirements and performance

Cold spraying

- High-, medium- and low-pressure cold spray processes
- Laser-assisted cold spraying
- Metals and composites, polymers
- Dense and pure coatings, bulk material properties
- Corrosion, electrical conductivity, repair, AM

Latest publication:

R. Jafari, J. Kiilakoski, M. Honkanen, M. Vippola, H. Koivuluoto, Wetting Behavior and Functionality Restoration of Cold-Sprayed Aluminum-Quasicrystalline Composite Coatings, Journal of Thermal Spray Technology, 32 (2-3) 2023, 609-626, doi: 10.1007/s11666-022-01522-w

Heli Koivuluoto

Cold spray - Repair

Zn-based repair

Needs for high

materials for LPCS

performance surfaces

Functional coating on

repaired component

Valve body (gray cast iron)

LPCS Zn+AI+AI₂O₃

Brake shoe (gray cast iron)

LPCS Zn+Cu+Al₂O₃

Tool holder (tempering steel)

LPCS Zn+Ni+Al₂O₃ Koivuluoto et al, International Thermal Spray Conference 2011, Hamburg, Germany

14th TWC International Wear Seminar - New Insights into Materials Science

Multifunctional cold spraying for repair

Corrosion protection *Metallic materials

Wear protection *Hardmetals

Koivuluoto et al., THERMEC'2023, Vienna, Austria

Multifunctional cold spraying for repair

HPCS AI LPCS Zn-Al-Al₂O₃ Al substrate

HPCS dense and protective coatings

HPCS Aluminium Al6061

30bar, 300°C 30bar, 400°C 40bar, 400°C 35bar, 400°C

Koivuluoto et al., Coatings, 10 (4) 2020, 248

Koivuluoto et al., SCANDEM2022

HPCS Aluminium Al2024

Multifuntional repair (LPCS and HVAF)

HVAF WC-CoCr

Process step	Material	Hardness HV _{0.3}
Coating	HVAF WC-CoCr	1312±60
Repair	Zn-Al-Al ₂ O ₃	80±6
Substrate	Stainless steel	260±8

Koivuluoto et al., THERMEC'2023, Vienna, Austria

14th TWC International Wear Seminar - New Insights into Materials Science

HVAF WC-CoCr – Wear resistance

V. Matikainen et al., Surface and Coatings Technology, 370, 2019, 196-212

Cold Spray – Additive Manufacturing

Icing research

Key research areas

- Development of icephobic coatings
- Ice laboratory with icing wind tunnel and ice adhesion measurement devices
- De-icing and anti-icing
- Icing behavior of different materials and surfaces
- Application-related development work

Latest publication:

R. Khammas, H. Koivuluoto, Durable Icephobic Slippery Liquid-Infused Porous Surfaces (SLIPS) Using Flame- and Cold-Spraying, Sustainability, 14 (14) 2022, 8422, doi: 10.3390/su14148422

Thermally sprayed icephobic coatings

H. Koivuluoto et al., Thermally sprayed coatings: Novel surface engineering strategy towards icephobic solutions, Materials, 13(6) 2020, 1434

Photos: Jonne Renwall/TAU

ICE Laboratory

Icing wind tunnel (IWiT)

Centrifugal ice adhesion test (CAT)

Pushing ice adhesion test

Temperature: -40°C – RT

Wind speed: 0 - 25 m/s

Iced area: $0.5 - 50 \text{ cm}^2$

LWC: 0 – 4.2 g/m³

Droplet size: 25 – 1000 µm

Ice type: rime, mixed glaze, glaze

SOUND of ICE

Thank you for your attention!

More information:

Dr.Tech. Heli Koivuluoto Associate Professor, Coating Technologies

Tampere University Materials Science and Environmental Engineering heli.koivuluoto(at)tuni.fi +358 40 849 0188

