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Chapter

Eigen-Analysis of Multi-Agent
Systems and Large Scale Systems
Using Data Driven and Machine
Learning Algorithms
Kenneth McDonald, Zhihua Qu and Azwirman Gusrialdi

Abstract

Eigenvalue analysis is central in stability analysis and control design of linear
dynamic systems. While eigen-analysis is a standard tool, determining eigenvalues of
multi-agent systems and/or interconnected dynamical systems remains challenging
due to the sheer size of such systems, changes of their topology, and limited informa-
tion about subsystems’ dynamics. In this chapter, a set of scalable, data-driven esti-
mation and machine learning algorithms are presented to determine eigenvalue(s)
and in turn stability of such large-scale complex systems. We begin with distributed
algorithms that estimate all the eigenvalues of multi-agent cooperative systems, where
their subsystems are modeled as a single integrator and interconnected by local com-
munication networks. The algorithms are then extended to the data-driven version
that estimate the dominant eigenvalues of large-scale interconnected systems with
unknown dynamical model. Subsequently, we study input-output stability of subsys-
tems and extend eigen-analysis to investigation of passivity shortage using the input-
output data. This analysis is then further extended to machine learning algorithms by
which stability properties of unknown subsystems can be learned. These results are
illustrated by examples.

Keywords: stability, eigenvalues, multi-agent systems, consensus algorithm,
input-output stability, passivity and passivity shortage, machine learning

1. Introduction

Eigen-analysis is a fundamental and well known concept in linear algebra and
linear systems theory. Technically, it deals with eigenvalues and eigenvectors of
matrices or linear transformations. When applied to linear systems, eigenanalysis
quantifies characteristics of dynamic responses, reveals such properties as stability
and robustness, and provides closed-form solutions. As applications move toward
multi-agent systems, large scale networked systems, and machine learning, eigen-
analysis remains to be an effective approach for qualitative and quantitative analyses.
This chapter aims to illustrate this fact by focusing upon a few of contemporary topics.
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This chapter begins with a summary of most foundational results in Section 2. The
section contains the following specific results. Section 2.1 provides eigenanalysis of
linear time-invariant systems, their solution, and their stability by summarizing the
basic results from [1, 2]. Section 2.2 introduces Lyapunov direct method [3] and
presents quadratic Lyapunov analysis in terms of eigenvalues. The Lyapunov direct
method applies to both linear and nonlinear dynamic systems. One way to bridge
analyses of linear and nonlinear dynamic systems is to parameterize their stability
analysis. To this end, Section 2.3 introduces dissipativity theory [4], which allows for
the classification of linear and nonlinear systems into passive and passivity-short
systems, providing a unified framework for their analyses. In Section 2.4, eigen-
analysis is applied to investigate stability analysis of multi-agent systems, including
cooperative and networked systems [5], and the result enables a scalable and modular
design [6] of networked control systems in terms of two key parameters on system’s
input-output relationship. In Section 2.5, input-output relationship is explicitly
derived for linear time invariant systems for the purpose of performing machine
learning as well as the subsequent stability analysis and control design.

Section 3 explores the eigen-analysis of multi-agent and large scale systems, with a
particular focus on systems that may have unknown models. The first part addresses the
problem of distributed eigenvalue estimation inmultiagent systems, where each agent has
access only to local information.While various distributed algorithms have been proposed
to tackle this issue (e.g., [7–10]), existing approaches such as the power iteration [7, 8]
and consensus-based algorithm [9] are typically limited to estimating only the dominant
eigenvalues. Even algorithms that can estimate all eigenvalues, such as [10], are often
restricted to specific types of matrices, such as rowstochastic ones. To address these
limitations, Section 3.1 presents distributed algorithms capable of estimating all eigen-
values for any irreducible matrix, broadening the applicability of eigenvalue estimation
methods. The discussion then extends to the challenge of distributed dominant eigenvalue
estimation for unknown linear time-invariant systems within autonomous, large scale
systems. Existing data-driven techniques, including dynamic mode decomposition
[11, 12], power iteration [13], prony method [14], distributed optimization-based
approach [15], and Hankel matrix [16], each face drawbacks. These include centraliza-
tion, applicability only to Laplacian matrices, or limitations to matrices with distinct
eigenvalues. To overcome these challenges, two distributed datadriven algorithms are
presented in Section 3.2, which estimate eigenvalues by learning local models and apply-
ing model reduction techniques, making them suitable for handling large scale models.

Different from Section 3, Section 4 addresses stability analysis and control design
through machine learning. Specifically, a data driven algorithm is presented to learn the
two key parameters. To demonstrate connection and effectiveness, the two parameters
are calculated using both approaches of eigenanalysis and machine learning. The
machine learning approach bypasses the step of model identification and hence is more
direct and efficient in design and analysis. Combined with the results in Section 2.4,
machine learning can be applied to multi-agent systems as well as large scale systems.

2. Preliminaries

2.1 Analysis of linear time-invariant systems and their stability

Eigenvalue analysis is both fundamental and straightforward to investigate stabil-
ity of linear time-invariant systems of form
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_x ¼ Axþ Bu, y ¼ CxþDu, (1)

where x∈ℜ
n is the state, u∈ℜ

m is the control input, and y∈ℜ
l is the output.

Defining the matrix exponential function eAt as

eAt ¼
X∞

j¼0

1

j!
Ajtj (2)

we know that eAt has the property of

d

dt
eAt ¼ AeAt ¼ eAtA:

Hence, the solution to system (1) is

_x tð Þ ¼ eAtx 0ð Þ þ

ðt

0
eA t�τð ÞBu τð Þdτ (3)

in which eA t�t0ð Þ is also called the state transition matrix.
Given matrix A, its eigenvalues λi and eigenvectors vi are defined as

Avi ¼ λivi, i ¼ 1,⋯, n:

Matrix A∈ℜ
n�n has n eigenvalues and, if the number of eigenvectors is r but less

than n, it always has n eigenvectors and generalized eigenvectors. Assembling these
eigenvectors and generalized eigenvectors into matrix S, we have

S�1AS ¼ J, J ¼

J1
⋱

Jr

2

6
4

3

7
5, Ji ¼

λi 1 0 ⋯

0 ⋱ ⋱ ⋱

⋮ ⋱ ⋱ 1

0 ⋯ 0 λi

2

6
6
6
4

3

7
7
7
5
∈ℜ

ni�ni ,

where J is the Jordan canonical form with diagonal blocks Ji, and ni is the geometric
multiplicity of eigenvalue λi.

It follows from the structure of J and the Taylor series expansion in (2) that

eAt ¼ S

eJ1t

⋱

eJlt

2

6
4

3

7
5S�1, eJit ¼

eλit teλit ⋯
tni�1

ni � 1ð Þ!
eλit

0 ⋱ ⋱ ⋮

⋮ ⋮ ⋱ teλit

0 0 ⋯ eλit

2

6
6
6
6
6
4

3

7
7
7
7
7
5

: (4)

Therefore, the following necessary and sufficient conditions can be concluded
from (3) and (4):

i. System (1) with u ¼ 0 is Lyapunov stable if and only if none of its eigenvalues
is in the right open half plane and those on the imaginary axis are of
geometrical multiplicity one.
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ii. System (1) with u ¼ 0 is asymptotically stable if and only if matrix A is
Hurwitz, i.e., its eigenvalues are all in the left open half plane.

iii. System (1) is input-to-state stable if and only if it is asymptotically
stable.

iv. System (1) with u ¼ 0 is exponentially stable if and only if it is asymptotically
stable.

If A is not Hurwitz, control u can be designed to achieve stability when pair A,Bf g
is controllable.

2.2 Stability analysis of linear time-varying systems

Consider linear time-varying system:

_x ¼ A tð Þxþ B tð Þu, y ¼ C tð ÞxþD tð Þu (5)

where x∈ℜ
n is the state, u∈ℜ

m is the input, and y∈ℜ
p is the output. It is known

that pointwise eigenvalues of time-varying matrix A tð Þ being in the left open half plan
do not imply stability of system (5), and a counterexample can be found in [3].
Instead, eigen-analysis of linear time varying system should be performed through the
Lyapunov direct method.

Consider the autonomous system:

_x ¼ A tð Þx, x∈ℜ
n
: (6)

For linear systems, Lyapunov function can always be chosen to be a quadratic
function of form

V x, tð Þ ¼ xTP tð Þx,

where P tð Þ is a symmetric matrix. Its time derivative along trajectories of system
(6) is also quadratic as

_V x, tð Þ ¼ �xTQ tð Þx,

where P tð Þ and Q tð Þ are related by the so-called differential Lyapunov equation

_P tð Þ ¼ �AT tð ÞP tð Þ � P tð ÞA tð Þ �Q tð Þ: (7)

To determine whether system (6) is asymptotically stable or not, the following
three-step backward process needs to be applied: (a) choose Q tð Þ to be symmetric,
uniformly bounded (in the sense that the maximum eigenvalue is uniformly
bounded from above as λmax Q tð Þð Þ≤ c<∞), and positive definite (in the sense that
in the sense that the minimum eigenvalue is uniformly above zero as
λmin Q tð Þð Þ≥ c>0). The simplest choice is Q tð Þ ¼ I. (b) Solve P tð Þ from Eq. (7). (c)
System (6) is asymptotically stable if and only if solution P tð Þ is uniformly bounded
and positive definite. Should matrix A tð Þ be constant, Eq. (7) is algebraic, and solution
P is constant.
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2.3 Analysis of nonlinear systems

Consider the following nonlinear affine system

_x ¼ f x, tð Þ þ g x, tð Þu, y ¼ h x, tð Þ, (8)

where x∈ℜ
n, u∈ℜ

m, and y∈ℜ
l are the state, input, and output, respectively.

System (8) includes system (6) as a special case. Stability of system (8) can be
investigated using Lyapunov direct method, as in Section 2.2. Lyapunov function
takes the general form of V x, tð Þ and have the following time derivative along the
trajectories of system (8):

_V ¼
∂V

∂t
þ

∂V

∂x

� �

f x, tð Þ þ g x, tð Þu½ �: (9)

To show asymptotic stability under u ¼ 0, one need to choose a positive definite
function η xð Þ and solve for Lyapunov function V x, tð Þ from the following partial
differential equation:

∂V

∂t
þ

∂V

∂x

� �

f x, tð Þ ¼ �η xð Þ: (10)

Stability can be determined by checking whether solution V x, tð Þ is both positive
definite and decrescent (i.e., upper and lower bounded by positive definite functions
γ1 xð Þ, γ2 xð Þ as γ1 xð Þ≤V x, tð Þ≤ γ2 xð Þ).

To investigate input-output relationship of linear and nonlinear systems, we can
use the dissipativity theory. System (8) is said to be dissipative with respect to a
positive semi-definite (p.s.d.) storage function V xð Þ and a supply rate function Φ u, yð Þ
if V 0ð Þ ¼ 0 and if, for all x0 ∈X ,

V x ∞ð Þð Þ � V x 0ð Þð Þ≤

ðt

0
Φ u τð Þ, y τð Þð Þdτ: (11)

As a Lyapunov function, the so-called storage function represents a broader con-
cept of the energy stored within the system. Consequently, the above inequality
implies that the stored energy at any given time, as described by the storage function,
is always less than or equal to the total energy supplied to the system, including the
initial energy.

Should the supply function be quadratic, inequality (11) is satisfied with

Φ u, yð Þ ¼ �η xð Þ þ uTy�
ϵ

2
∥u∥2 �

ρ

2
∥y∥2, (12)

where η xð Þ is a positive semi-definite function. If the storage function is positive
definite, it is a Lyapunov function, and system (8) is asymptotically stable. Depending
upon the values of parameters ϵ and ρ, several sub-classes of dissipativity are given in
Table 1.

It is well known that passive linear systems must be of relative degree 0 or 1,
Lyapunov stable, and also minimum phase (or inversely Lyapunov stable).

This means that most of the stable systems are not passive. Since the engineered
systems, such as teleoperation of an n-link robot [17] and synchronous generator,
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would have bounded outputs when their inputs are bounded, these systems are typi-
cally input-feedforward passivity short (IFPS). It is known that, with an appropriate
self-feedback control, a stabilizable linear system can achieve the IFPS property [18].
It is shown in the rest of the chapter that both passivity and passivity shortage enable
modular analysis/design of complex systems, indirect eigen-analysis using input-
output data, and machine learning.

2.4 Multi-agent systems and cooperative networked systems

A multi-agent system consists of cooperative agents with simple dynamics:

_yi ¼ ui, i∈N , (13)

where N ¼ 1,⋯, nf g is the set of agents. These agents communicate through a
local communication network of graph G ¼ N ,ℰð Þ, where ℰ⊆N �N is the edge set
and eij ∈ℰ implies that yj is sent by the jth agent to the ith agent, or j∈N i withN i ⊂N

is the ith agent’s neighbor set. Graph G is generally directed, i.e., eij ∈ℰ does not
necessarily mean eji ∈ℰ or vice versa. Graph G is said to be strongly connected if every
node is connected by directed edges to any other node. These local interactions enable
the following cooperative consensus protocol:

ui ¼
X

j∈N i

wij yj � yi

� �

, (14)

where wij >0 are weights. The resulting cooperative system can be expressed as

_y ¼ �Ly, (15)

where

L ¼ Lij

� �
, Lij ¼

0 if j 6¼ iand j ∉ N i

�wij if j 6¼ iand j∈N i
P

j∈N i

wij if j ¼ i

8

>><

>>:

(16)

Sub-classes ϵ ρ

Passive ϵ, ρ≥0

Input strictly passive (ISP) >0 ≥0

Output strictly passive (OSP) ≥0 >0

Input-output strictly passive (IOSP) >0 >0

Passivity short (PS) either ϵ<0 or ρ<0

Input-feedforward passivity short (IFPS) <0 ≥0

Output-feedback passivity short (OFPS) ≥0 <0

Table 1.
Sub-classes of dissipativity and their parameter values.
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is the so-called Laplacian. Laplacian L is always Lyapunov stable, λ1 Lð Þ ¼ 0 is the
eigenvalue(s) closest to the imaginary axis, and the corresponding eigenvector is the
vector of 1 s. Should G be strongly connected, λ1 Lð Þ ¼ 0 is unique, and all of yi
converge to the same consensus value. If G is undirected and connected, Laplacian L
can be symmetric (with wij ¼ wji), and its eigenvalues values λi Lð Þ are all real and the
property that

0 ¼ λ1 Lð Þ< λ2 Lð Þ≤⋯≤ λn Lð Þ: (17)

While multi-agent systems are easy to analyze, networked systems from applica-
tions often have heterogeneous dynamics in the form of

_zi ¼ f i zi, uið Þ, yi ¼ hi zið Þ, (18)

where zi ∈ℜ
ni and yi ∈ℜ

l are the state and the output of the ith system, respec-
tively. System (18) includes multi-agent system (13) as a special case. Instead of
assembling all the dynamics from system (18) and analyzing the stability together,
one can use the concepts of passivity and passivity shortage to perform modular
analysis and design. To this end, first assume that system (18) has storage function
V i zið Þ and the following dissipativity property:

_V i ≤ yTi ui � ϵiu
T
i ui � ρiy

T
i yi (19)

where ϵi and ρi can assume values according to Table 1. Next, assume that Laplace
L is symmetric and connected, and revise the consensus protocol (14) by incorporat-
ing cooperative control gain κ>0 as

ui ¼ κ
Xn

j¼1

wij yj � yi

� �

: (20)

Then, choosing the following Lyapunov function

V ¼
Xn

i¼1

Vi, (21)

and taking the time derivative along the trajectories of system (18) under control
(20) yield

_V ≤
Xn

i¼1

yTi ui � ϵiu
T
i ui � ρiy

T
i yi

� �

¼ �yTQy,

(22)

where

Q ¼ κLþ κ2 diag ϵif gL2 þ diag ρif gI: (23)

It is obvious that the overall system of heterogeneous subsystems reaches consen-
sus if matrix Q has the property of λmin Qð Þ≥0. This is ensured if the following scalar,
quadratic inequality admits positive solution κ:
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κλ2 Lð Þ þ κ2 min 0, min
i

ϵi

� 	� �

λ2n Lð Þ þ min
i

ρi

� �

≥0: (24)

A quick analysis of the above inequality reveals the following stability property for
cooperative networked systems:

i. If all the systems in (18) are passive, consensus can be achieved for any
κ∈ 0,∞ð Þ:

ii. If all the systems in (18) are either passive or IFPS, there exists κ>0 such that
consensus can be achieved for any κ∈ 0, κð Þ.

iii. If all the systems in (18) are either passive or OFPS, there exists k>0 such
that consensus can be achieved for any κ∈ κ,∞ð Þ.

If the systems in (18) are a mixture of being passive, IFPS, and OFPS, consensus
can still be achieved by changing common gain κ into individual gains κi. These results
show that, for cooperative consensus control (20) or its individual gain version,
choices of cooperative control gains are modular and plug-and-play in spite of het-
erogeneous dynamics (18).

2.5 Data-driven modeling

For linear systems, data-driven modeling refers to the approach of building
models based solely on input-output data, without requiring explicit knowledge of
the system’s internal dynamics or parameters. This method is particularly useful
when the system is a black or gray box, or its internal parameters are
inaccessible. In this section, input-output relationship is established using
discretization so that machine learning of key parameters can be done later in
Section 4.

Consider linear system (1). Its discretized version is: given x 0ð Þ ¼ 0 and sampling
period Ts,

xlþ1 ¼ Adxl þ Bdul, yl ¼ Cxl þDul, Ad ¼ eATs , Bd ¼ A�1 Ad � Ið ÞB: (25)

To further represent the system in terms of inputs and outputs [19], consider the
representation given by

yl ¼
Xl

τ¼0

gτul�τ, g0 ¼ D, gτ ¼ CAτ�1
d Bd, ∀τ>0: (26)

Passive systems have relative degree r to be either 0 or 1. On the other hand,
passivity short systems may have r≥ 1, causing the convoluted matrix Gd to becomes
singular. This can be avoided by utilizing its reduced order representation as needed.
Let Y ¼ GdU, where N is sufficiently large,

Y ¼ yr yrþ1 ⋯ yN�1

� �
, U ¼ u0 u1 ⋯ uN�1�r½ �, (27)
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Gd ¼

gr 0 0 ⋯ 0

grþ1 gr 0 ⋯ 0

⋮ ⋱ ⋱ ⋱ 0

gN�1 gN�2 gN�3 ⋯ gr

2

6
6
6
4

3

7
7
7
5
∈ℜ

N�rð Þ� N�rð Þ
: (28)

It follows that, for sufficiently small
TS >0,

ð
∞

0
uTyds ¼ TsU

TY ¼ TsU
TGdU,

ð
∞

0
uTuds ¼ TsU

TU: (29)

Next, the relationship between the reversed input and output sequences is

described. Let P∈ℝ
N�N be the exchange (or reversal) matrix whose elements are 0

except for anti-diagonal elements being 1’s. If Y ¼ GdU, the response underU0 ¼ PU is

Y 0 ¼ GdPU, (30)

where

y0l ¼
Xl

τ¼0

gτu
0
l�τ ¼

Xl

τ¼0

gτuN�1�lþτ: (31)

Therefore, defining

Y 00 ¼ PY 0, (32)

we have

y0
0
l ¼ y0N�1�l ¼

XN�1�l

τ¼0

gτulþτ ¼
XN�1

τ0¼l

gτ0�luτ0 : (33)

The above expression can be rewritten in a compact form as

P Gd PUð Þ
zffl}|ffl{

u0
2

6
4

3

7
5

|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

Y 0

¼ PGdPU ¼ GT
dU: (34)

Eqs. (29) and (34) form the input-output relationship that enable machine learn-
ing.

3. Distributed algorithms for estimating the eigenvalues of multi-agent
and large scale interconnected systems

We start this section by presenting a distributed algorithm for estimating all the
eigenvalues in multi-agent systems where the agent is modeled as a single integrator.
Next, we discuss how to extend the approach to the case of large scale interconnected
systems with unknown system matrix and whose subsystem’s dynamics is given by a
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linear-time invariant system. To this end, distributed data-driven estimation algo-
rithms are presented which only rely on the collected measurements of the system’s
states (i.e., offline data).

3.1 Model-based distributed algorithm for estimating eigenvalues in multi-agent
systems

Consider a multi-agent system consisting of n number of agents and whose overall
dynamics is given by

_y ¼ Ay, (35)

where y ¼ y1,⋯, yn
� �T

and yi ∈ℝ denotes the output of the i-th agent. It is assumed
that agent i only has access to the local information, that is the i-th row of matrix A,
denoted by vector A½ �i ∗ . Furthermore, the agents can communicate/exchange infor-
mation with each other via a communication network whose topology is similar to the
sparsity of matrix A and is given by a strongly connected directed graph G, that is
matrix A is irreducible. For example, matrix A can be a Laplacian or adjacency matrix,
as described in Section 2.4. The agents aim to collaboratively estimate all the eigen-
values of A by using only their local information A½ �i ∗ .

3.1.1 Model-based distributed eigenvalues estimation algorithm

In order to estimate all the eigenvalues of A in a distributed manner, all the agents
cooperatively perform the following steps whose detailed analysis can be found in
[20]:

1.First, all the agents collaboratively transform matrix A into a nonsingular

matrix A ¼ aij
� �

defined as A ¼ Aþ cIn with c∈ℝ. Based on Gershgorin
theorem, the constant c can be chosen cooperatively by the agents to ensure

that aiij j>
P

j 6¼i aij
�
�

�
� for all i ¼ 1,⋯, nf g. To that end, agent i first sets ci 0ð Þ ¼ ϵi þ

P

j aij
�
�

�
� for arbitrary value of ϵi >0 to ensure aiij j>

P

j 6¼i aij
�
�

�
�. Next, all the agents

should choose a common value c from all the values of ci 0ð Þ so that aiij j>
P

j 6¼i aij
�
�

�
�

for all i ¼ 1,⋯, nf g. Specifically, the value of c can be chosen as c ¼ max i ci 0ð Þ
which can be computed distributively by performing the following maximum
consensus protocol [21] for n iterations

ci kþ 1ð Þ ¼ max
j∈N i∪ if g

cj kð Þ, k ¼ 0, 1,⋯, n: (36)

2.After constructing a nonsingular matrix A from matrix A, each agent then

distributively computes A
�1
, denoted by Z, by solving a system of linear

equations AZ ¼ In using its own local information A
� �

i ∗
. To this end, each agent

implements the following update rule

Ẑi kþ 1ð Þ ¼ Ẑi kð Þ �
1

N ij j
Pi N ij jẐi kð Þ �

X

j∈N i

Ẑj kð Þ

0

@

1

A, (37)
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where matrix Ẑi kð Þ∈ℝ
n�n denotes the local estimation of Z ¼ A

�1
by the i-th

agent at the k-th iteration and whose initial value is chosen to satisfy

A
� �T

i ∗
Ẑi 0ð Þ ¼ In½ �Ti ∗ . Moreover, matrix Pi ¼ PT

i ∈ℝ
n�n is an orthogonal projection

on the kernel of vector A
� �

i ∗
, namely Pi ¼ In �

1

A½ �
T

i ∗
A½ �

i ∗

A
� �

i ∗
A
� �T

i ∗
. Each agent’s

local estimate Ẑi kð Þ under (37) will then converge to A
�1

as k ! ∞.

3.Each agent computes all the eigenvalues of A by exploiting the relationship
between λi Að Þ and λi Zð Þ given by λi Að Þ ¼ 1

λi Zð Þ � c.

One of the benefits of the above method is that each agent is not only able to
distributively estimate all the eigenvalues of A but also the corresponding eigenvec-

tors. Specifically, noting that both matrices A and A
�1

share the same eigenvectors
each subsystem can compute distributively the eigenvectors of matrix A from the

learned matrix A
�1
.

Remark 1. Distributed algorithm (37) converges exponentially to A
�1

[20]. Fur-
thermore, it can be observed from (37) that each agent needs to exchange n2 values
with its neighbors and require to store also n2 values. One may then ask why each
agent does not just flood its row A½ �i ∗ to its neighbors so that each agent can then
construct matrix A. In contrast to (37), the flooding strategy is not locally adaptable
under topology changes [20]. Moreover, convergence of update rule (37) is also
guaranteed under time-delay and asynchronous setting [22].

3.1.2 An illustrative example

Consider a multi-agent system consisting of four omnidirectional mobile robots
whose kinematic model are given by (13) where yi denotes its position. Since the robot
can move in any directions, its kinematic model can be decoupled for each axis and
thus in this example, without loss of generality, we only focus on the motion control of
the robots for one axis. The goal is to design control input (velocity) ui, which depends
on the positions of some other robots obtained via a communication network, so that
all the robots gather at a common location, e.g., for recharging their batteries. This
problem is also known as rendezvous problem [5]. To this end, one can design a
consensus protocol given in (14) and assuming the network topology is strongly
connected it is ensured that all the four robots gather at a common location. The
overall system’s closed-loop dynamics can then be written as in (35) where matrix
A ¼ �L. For example, Laplacian matrix L can be designed as

L ¼

0:5 �0:5 0 0

0 0:4 0 �0:4

�0:8 �0:2 1 0

0 0 �0:8 0:8

2

6
6
6
4

3

7
7
7
5

(38)

whose eigenvalues equal to 0, 1:2616,0:7192� 0:5367i. The second smallest
eigenvalue of L measures the network connectivity and convergence rate for reaching
consensus [23] while the third smallest eigenvalue provides a metric for ensuring
robust connectivity in the presence of single robot failures [24]. The robots can
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cooperatively estimate the eigenvalues of L using the steps presented in previous

subsection. Specifically, the robots set c ¼ 3 and initial values Ẑi 0ð Þ as

Ẑ1 0ð Þ ¼

0 0 0 0

�2 0 0 0

0 0 0 0

0 0 0 0

2

6
6
6
4

3

7
7
7
5
, Ẑ2 0ð Þ ¼

0 0 0 0

0 0 0 0

0 0 0 0

0 �
5

2
0 0

2

6
6
6
6
4

3

7
7
7
7
5

,

Ẑ3 0ð Þ ¼

0 0 0 0

0 0 0 0

0 0
1

4
0

0 0 0 0

2

6
6
6
6
4

3

7
7
7
7
5

, Ẑ4 0ð Þ ¼

0 0 0 0

0 0 0 0

0 0 0 �
10

8
0 0 0 0

2

6
6
6
6
4

3

7
7
7
7
5

: (39)

After executing update rule (37) for 100 iterations, all local estimations Ẑi kð Þ

converge to L
�1
, that is

Ẑi 100ð Þ ¼

0:2859 0:0421 0:0009 0:0044

0:0014 0:2947 0:0062 0:0310

0:0573 0:0232 0:2505 0:0024

0:0121 0:0049 0:0527 0:2637

2

6
6
6
4

3

7
7
7
5
, i ¼ 1,2,3,4f g: (40)

After distributively estimating L
�1
, robot j can then calculate the eigenvalues of

matrix L given by 1
λi Ẑj 100ð Þð Þ

� 1.

3.2 Distributed and data-driven algorithms for estimating eigenvalues of a large
scale interconnected system

In this subsection, we extend the setting in the previous subsection to large scale
(physically) interconnected systems where its subsystem’s dynamics can be modeled
as an LTI system, for example power system [25] and thermal model of large buildings
[26], which makes the dimension of the overall system very high. It is worth noting
that in some applications one may only be interested in estimating the dominant
eigenvalues of the overall matrix A. For example, in power systems the dominant
eigenvalues, aka inter-area oscillation modes, play an important role for wide-area
monitoring applications. These slow eigenvalues arise from the oscillations between
the coherent areas in power system which may lead to small-signal stability concern
and thus needs to be constantly monitored. However, the high dimension of the
overall system prevents one from using distributed estimation algorithm presented in
the previous subsection. In addition, the large-scale system model (i.e., matrix A) is
also often unknown/not available in practice due to geographical constraint or it may
change because of perturbation which calls for data-driven methods.

Let us consider a large scale interconnected system divided into r nonoverlapping
and coherent clusters where the j-th cluster consists of nj subsystems. Since the
clusters are coherent, one can represent the i-th cluster with an equivalent
subsystem whose state ~xi ∈ℝ

p is the averaged state of all the subsystems in that
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cluster, i.e., ~xi ¼

Pni

j¼1
wjxj

Pni

j¼1
wj

where wi >0 denotes some weights. Hence, the reduced

order model of the large scale interconnected system can be written as

_~x ¼ Ar~x, (41)

where ~x ¼ ~xT1 ,⋯, ~xTr
� �T

and Ar is the reduced system matrix whose eigenvalues
correspond to the dominant/slow eigenvalues of the original system matrix A. For
details of the modeling, one can refer to [27]. It is assumed that the i-th subsystem has

access only to its own sampled state xi kð Þ≜xi tð Þ
�
�
t¼kT

, k ¼ 0, 1, … where T denotes the

sampling time. The discrete-time model of (41) is then given by

~x kþ 1ð Þ ¼ Ad~x kð Þ (42)

where matrix Ad ¼ eArT. The relation between eigenvalues of both Ar and Ad is

given by λi Adð Þ ¼ eλi Arð ÞT .
If the eigenvalues of Ar are distinct, one can readily apply the Prony method

[14, 28] to estimate the eigenvalues of Ar using the averaged state ~x kð Þ. In the follow-
ing, we present an alternative distributed and data-driven method to estimate the
eigenvalues of Ar which does not require them to be distinct.

3.2.1 Distributed model learning algorithms

Briefly speaking, the idea is to first learn in a distributed fashion the reduced model
Ar from the averaged state ~x kð Þ [29]. Without loss of generality and for the sake of
simplicity, it is assumed that there exists a virtual agent in each cluster which collects
measurement xi kð Þ from all subsystems in the i-th cluster to calculate the average state
in the corresponding cluster and cooperatively learns the reduced model with the
other virtual agents. To that end, we assume that the communication network topol-
ogy between the virtual agents is given by a strongly connected directed graph.

Assuming that the sampling time is sufficiently small, one can approximate Ad as

Ad ¼ I þ ArT (43)

whose eigenvalues are given by λi Adð Þ ¼ 1þ Tλi Arð Þ. Each virtual agent i then
collects the following sampled averaged state

Xi ¼ ~xi k0ð Þ,⋯, ~xi km�1ð Þ½ �∈ℝ
p�m,

Y i ¼ ~xi k0 þ 1ð Þ,⋯, ~xi km�1 þ 1ð Þ½ �∈ℝ
p�m,

(44)

where m denotes the amount of data used for learning. Note that the index

k0, k1,⋯, km�1f g does not need to be sequential. Defining matrices X ¼ XT
1 ,⋯,XT

r

� �T

and Y ¼ YT
1 ,⋯,YT

r

� �T
, we have the following relation

Y ¼ AdX: (45)

Furthermore, let us set m ¼ pr. Given that matrix X is nonsingular, matrix Ad can
then be learned by computing
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Ad ¼ YX�1 (46)

using only local information available to each virtual agent. To this end, the virtual

agents first estimate X�1 using update rule similar to (37). Once all the virtual agents

compute the estimate of X�1, the i-th virtual agent can then learn the p i� 1ð Þ þ 1ð Þ �
th until the pi-th rows of matrix Ad, denoted by Ad,i, as follows:

Ad,i ¼ Y iX
�1

: (47)

Finally, using the learned Ad,i the virtual agents can distributively estimate the
eigenvalues λi Adð Þ (and λi Arð Þ accordingly) using the method presented in Section 3.1.

One key assumption in the method described above is that all the virtual agents are
able to construct matrix Xi from its own state measurement such that the matrix X is
nonsingular. When the matrix X is ill-conditions for any given set of sampled mea-
surements, one can alternatively learn matrix Ad by solving a least square problem. To
that end, each virtual agent first constructs the measurement matrices Xi,Y i in (44)
with m> p2r samples and from (45) satisfy the relation Y i ¼ Ad,iX. Next, the agent

constructs a vector ai ∈ℝ
p2r whose entries equal to the entries of unknown matrix Ad,i.

Equation Y i ¼ Ad,iX can be written as

Xr
iai ¼ hi, (48)

where matrix Xr
i ∈ℝ

pm�p2r and vector hi ∈ℝ
pm are constructed from matrices X

and Y i, respectively. Agent i can then learn the entries of Ad,i by solving the following
least square problem

âi ¼ argmin
ai

1

2
Xr

iai � hi
�
�

�
�2

2
: (49)

Remark 2. In order to construct matrix Xr
i and learn the local model, agent i needs

to collect Xj from all other agents which requires all-to-all bidirectional communica-
tion between the virtual agents. This communication requirement and the size of
vector ai can be reduced if the sparsity structure of matrix Ad is known in advance.
After learning the local model, distributed algorithms presented in Section 3.1.1, and
whose complexity is discussed in Remark 1, can be adopted to distributively estimate
the eigenvalues.

Remark 3. If the structure or property of matrix Ad is known, one can then
incorporate this side information as constraints in solving (49).

Remark 4. When the measurements are noisy, one can perform data
preprocessing by filtering the noise or smoothing the data before learning the local
model.

3.2.2 An illustrative example

Consider an interconnected system of 16 undamped oscillators, divided into 4
coherent clusters as shown in Figure 1. Dynamics of the i-th oscillator is given by

Δ€δi ¼ �
X

j∈N i

Δδi � Δδj

rij
, (50)
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where Δδi denotes the phase angle of oscillator i and rij represents the reactance
of tie lines connecting oscillators i and j. We set rij of the intra-cluster and intercluster
tie lines to be 0.001 per unit and 1 per unit respectively. The reduced order matrix

Ar is given by Ar ¼
0 I

Lr 0

 �

where �Lr is a weighted Laplacian matrix and the state

~x ¼ Δδr,1,⋯,Δδr,4,Δ _δr,1,⋯,Δ _δr,4
� �T

with Δδr,i denotes the average phase angle of the
equivalent oscillator in the i-th cluster. Using the slow-fast time-scale separation
principle [30], matrix Lr can be analytically calculated as

Lr ¼

�0:4997 0:2498 0:0001 0:2498

0:2498 �0:4997 0:2498 0:0001

0:0001 0:2498 �0:4997 0:2498

0:2498 0:0001 0:2498 �0:4997

2

6
6
6
4

3

7
7
7
5

: (51)

In order to learn distributively matrix Ar, a virtual agent is assigned to each cluster
which can communicate with each other as shown in Figure 1. Each virtual agent
computes the average state for each area as illustrated in Figure 2a. Each virtual agent
then distributively learn the corresponding rows of Ar by solving (49) where the
number of data m = 1000 and the index kjþ1 � kj ¼ 10 in (44) for all j, see Figure 2b.
Note that the sampling time equals to T = 0.001s. In addition, the virtual agent also
incorporates the side information regarding the sparsity structure of Ar and the
property of the Laplacian �Lr, discussed in Section 2.4, when solving its least square
problem. The learned model is given by

L̂r ¼

�0:5004 0:2487 0:0014 0:2503

0:2496 �0:5001 0:2497 0:0008

0:0007 0:2504 �0:5006 0:2496

0:2507 0:0016 0:2486 �0:5009

2

6
6
6
4

3

7
7
7
5

: (52)

The comparison between the data and the trajectories of the reduced dynamical
system using the learned model is shown in Figure 2b. It can be observed that the
virtual agents are able to learn accurately the reduced order model Ar. Finally, the

Figure 1.
Left: 4-cluster 16 second-order oscillators. Right: virtual agents representing each cluster and their communication
network topology.
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comparison between eigenvalues of the analytically calculated matrix Ar and the

eigenvalues of the learned matrix Âr is given by

true eigenvalues : 0, 0, � 0:7070i, � 0:7070i, � 0:9996i,

estimated eigenvalues : 0, 0, � 0:7074i, � 0:7091i, � 0:9994i:

4. Machine learning for passive and passivity-short systems

In this section, two methods are explored to determine the indices ϵ and ρ of
passive and passivity-short systems. These indices can be found using the eigenvalue-
based approach of linear matrix inequality (LMI) and the data-driven technique
proposed in [19, 31] for passive systems. The LMI approach requires perfect knowl-
edge of the system but offers the highest level of precision in determining the passiv-
ity indices, as it avoids the errors associated with discrete-time approximations, such
as those introduced by sampling and discretization. In comparison, the data-driven
approach is less precise but offers an approach of finding passivity or passivity short
indices solely and directly from input output data, providing the alternative for
unknown systems and avoiding the step of model identification.

4.1 Direct method: Linear matrix inequality (LMI) approach

The LMI approach is an eigenvalue based method that leverages the continuous
time system for defining an inequality condition that expresses constraints on a
system using matrices, where the passivity constraint is integrated directly into the
condition. By formulating the passivity conditions as LMIs, convex optimization
techniques can be utilized to solve for the indices.

Consider system (1) and the Lyapunov function V ¼ 0:5xTSx, where S is a positive
definite matrix. The time derivative of Lyapunov function is given by

_V ¼
1

2
xT SAþ ATS

� �
xþ xTSBu, (53)

Figure 2.
(a) Snapshots of true states and average states of oscillators in cluster 1; (b) Comparison between data and
trajectories generated using the learned reduced order model in cluster 1.
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which satisfy the following dissipativity condition

_V ≤ uTy�
ϵ

2
∥u∥2 �

ρ

2
∥y∥2, (54)

if and only if the following matrix inequality (i.e., in terms of its minimum eigen-
value being non-negative) hold:

W ϵ, ρð Þ ¼
�ATS� SA� ρCTC �SBþ CT � ρCTD

�BTSþ C� ρDTC �ϵI þDþDT � ρDTD

" #

≥0: (55)

Leveraging semi-definite program solvers for optimization, passivity indices ϵ and
ρ can be determined by following the procedure defined in Algorithm 1.

Algorithm 1 Passivity Indices Using LMI

1: Solve

~ϵ ¼ argmax Sϵ subject to W ϵ, 0ð Þ≥0, S>0

2: if ~ϵ>0 then

3: The system is passive

4: The ISP index ϵ ∗ ¼ ~ϵ

5: The OSP index ρ ∗ is determined by

ρ ∗ ¼ argmax Sρ, subject to W 0, ρð Þ≥0, S>0

6: The IOSP indices ρ (or ϵ) can be found for any fixed value of ϵ (or ρ)

less than its upper bound using

ϵ ∗ or ρ ∗ð Þ ¼ argmax S ϵ or ρ ∗ð Þ, subject to W ϵ, ρð Þ≥0, S>0

7: end if

8: if ~ϵ<0 then

9: The system is passivity short

10: Set ϵ ¼ �1 to admit unique solutions

11: The OFPS index ρ ∗ is determined by

ρ ∗ ¼ argmax S ρ, subject to W �1, ρð Þ≥0, S>0

12: The IFPS index ϵ is determined, for any ρ∈ 0, ρ ∗½ Þ, using

ϵ ¼ s ϵ, subject to W ϵ, ρð Þ≥0, S>0

13: end if

Remark 5. The above LMI solution is computationally efficient as it has the com-
plexity of linear programming. Should the system dynamics are linear but contain
parameterizable and bounded uncertainties, one could adopt the model of so-called
interval systems. In this case, the matrices {A, B, C,D} may have their known parts and
their uncertain parts. For example, system matrix A becomes Aþ ΔA, where entries of
ΔA belong to certain known intervals. In such cases, the above LMI solution can be
extended to these interval systems, and the reader is referred to relevant literature.

4.2 Indirect method: Data-driven approach

In previous sections, analytical methods for determining passivity indices, using
model-based approaches, were examined. While these methods provide precise
methods for determining passivity, they are explicitly dependent on the mathematical
model of the system. However, in practical applications, the system model cannot be
obtained or determined due to the complex nature of the system or unknown knowl-
edge of parameters. To address these challenges, we extend the data-driven
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approaches in [19, 31] to find passivity and passivity short indices on both the input
and output channels of a model using data only.

Assume that system (1) can be tested but its model is unknown. Then, its output
data can be collected upon feeding an input into the system. If x(0) = 0, x(∞) = 0,
we have

0≤

ð
∞

0
uTyds�

ϵ

2

ð
∞

0
∥u∥2ds�

ρ

2

ð
∞

0
∥y∥2ds (56)

where ϵ, ρ > 0 are the largest possible values to satisfy the above inequality. It can
be seen that, if ρ (or ϵ) is given then

ϵ≤

ð
∞

0
uTyþ yTu� ρ∥y∥2
� �

ds
ð
∞

0
∥u∥2ds

or ρ≤

ð
∞

0
uTyþ yTu� ϵ∥u∥2
� �

ds
ð
∞

0
∥y∥2ds

(57)

where ϵ (or ρ) > 0 is the largest value satisfying the above inequality. This can be
further refined into objective functions

ϵ ¼ max
U

f ϵ Uð Þ or ρ ¼ max
U

f ρ Uð Þ (58)

where

f ϵ Uð Þ ¼
UTY þ YTU � ρYTY

UTU
or f ρ Uð Þ ¼

UTY þ YTU � ϵUTU

YTY
: (59)

To solve Eq. (58), a gradient descent method can be implemented using the update
rule

U kþ1ð Þ ¼ U kð Þ � δ kð Þ∇f z U kð Þ
� �

(60)

where z∈ ρ, ϵ½ �, the optimal step size δ kð Þ is given by Eq. (67) and ∇f z U kð Þ
� �

is the
gradient of f z defined in Algorithm 3 of the Appendix.

Algorithm 2 provides the procedure to determine passivity indices ϵ and ρ in a
similar manner to Algorithm 1, and Algorithm 3 defines the gradient descent function
used in Algorithm 2.

Remark 6. The above data-driven approach is iterative and computationally sim-
ple, and its convergence property depends upon the specific numerical search algo-
rithm used. In the following examples, the standard gradient search algorithm is used,
and its convergence is optimized by online implementing the optimal stepsize derived
in the Appendix.

4.3 Illustrative examples

In this section, we demonstrate the effectiveness of the proposed algorithms on
simple second order systems and a real world synchronous generator system of
order 6.
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Algorithm 2 Passivity Indices Using Data Driven Indirect Approach

1: Solve the following where ρ ¼ 0

~ϵ ¼ PassivityGradientDescent f ϵ,∇f ϵ,U
0ð Þ
ϵ , δϵ,K, 0

� �

2: if ~ϵ>0 then

3: The system is passive

4: The ISP index ϵ ∗ ¼ ~ϵ

5: The OSP index ρ ∗ is determined by

ρ ∗ ¼ PassivityGradientDescent f
ρ
,∇f

ρ
,U 0ð Þ

ρ , δρ,K, 0
� �

6: The IOSP indices ρ (or ϵ) can be found for any fixed value of ϵ (or ρ)

less than its upper bound using

ϵ ∗ ¼ PassivityGradientDescent f ϵ,∇f ϵ,U
0ð Þ
ϵ , δϵ,K, ρ

� �

ρ ∗ ¼ PassivityGradientDescent f ρ,∇f ρ,U
0ð Þ
ρ , δρ,K, ϵ

� �

7: end if

8: if ~ϵ<0 then

9: The system is passivity short

10: Set ϵ ¼ �1 to admit unique solutions

11: The OFPS index ρ ∗ is determined by

ρ ∗ ¼ PassivityGradientDescent f ρ,∇f ρ,U
0ð Þ
ρ , δρ,K, ϵ

� �

12: The IFPS index ? is determined, for any ρ∈ 0, ρ ∗½ Þ, using

ϵ ∗ ¼ PassivityGradientDescent f ϵ,∇f ϵ,U
0ð Þ
ϵ , δϵ,K, ρ

� �

13: end if

4.3.1 Simple 2nd order systems

Consider the following two input-output stable, continuous time systems:

_x ¼
0 1

�2 �3

 �

xþ
0

1

 �

u y ¼ 1 0½ �xþ 0:5u: (61)

_x ¼
0 1

�2 �3

 �

xþ
0

1

 �

u y ¼ 1 0½ �x: (62)

These systems are discretized using a first-order hold with a sampling rate of 0.01
and Ts ¼ 2500. The initial inputs were chosen to be

U 0ð Þ
ϵ tð Þ ¼

sin 0:2πtð Þ

∥ sin 0:2πtð Þ∥
, U 0ð Þ

ρ tð Þ ¼
sin 2πtð Þ

∥ sin 2πtð Þ∥
(63)

Figure 3 presents the passivity index results for passive system (61), and Figure 4
shows the results for passivity short system (62). In both figures, the Nyquist dia-
grams provide visual confirmation of the systems’ stability. The convergence of the
ISP and IFPS indices, ϵ, is depicted in the top-right plot, illustrating how, over the
prescribed number of iterations k, the estimate of ϵ from the indirect approach
converges to the true value of ϵ given by the direct approach. Similarly, the conver-
gence of OSP and OFPS indices ρ are shown in the bottom-left plots. Finally, the
bottom-right plots present the Pareto fronts for IOSP and IOPS indices. The Pareto
front represents the trade-offs between ϵ and ρ, where optimality is achieved by
minimizing one parameter while solving for the other. For passive systems, the feasi-
ble region is finite and constrained to the first quadrant, indicating that both ϵ and ρ
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remain non-negative. In contrast, the passivity-short system exhibits an unbounded
region, with ϵ extending to negative infinity, reflecting the greater flexibility and
reduced constraints inherent in passivity-short conditions.

4.3.2 A real-world example

Consider the following 6th order model of a turbine generator [32], in form of
system (1) with matrices:

A ¼

0 377 0 0 0 0

�0:2673 0 �0:2946 0 0 0:211

�0:2763 0 �0:580 0:1695 0 0

�66:3405 0 �535:1923 �20 0 0

0 �0:09 0 0 �3:333 0

0 0 0 0 1:0 �1:0

2

6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
5

,

B ¼ 0 0 0 0 3:3333 0½ �T

C ¼ 1:2668 0 1:3966 0 0 0½ �,

D ¼ 0½ �:

Compared to that in [32], the above is a reduced order model in which the excita-
tion control dynamics are removed. The discretized system is obtained using a least
squares approximation with a sampling rate of 0.01 and Ts ¼ 2500 and it can be

Figure 3.
Passivity results for system (61). Nyquist diagram (top left), convergence of indirect ϵ to direct ϵ (top right),
convergence of indirect ρ to direct ρ (bottom left), pareto front (bottom right).
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Figure 4.
Passivity results for system (62). Nyquist diagram (top left), convergence of indirect ϵ to direct ϵ (top right),
convergence of indirect ρ to direct ρ (bottom left), pareto front (bottom right).

Figure 5.
Passivity results for turbine generator. Nyquist diagram (top left), convergence of indirect ϵ, with and without
noise, to direct ϵ (top right), convergence of indirect ρ to direct ρ with and without noise (bottom left), pareto
front with and without noise (bottom right).

21

Eigen-Analysis of Multi-Agent Systems and Large Scale Systems Using Data Driven…
DOI: http://dx.doi.org/10.5772/intechopen.1007815



shown that the system is passivity short. The initial inputs from (63) are reused, and
to demonstrate practicality, the indirect approach was solved with and without the
presence of noise. A white Gaussian noise, with a specified signal to noise ration
(SNR) given in dB, was applied to the outputs of the system that are determined
directly from U. Figure 5 provides the results for the turbine generator system when
both direct and indirect passivity approaches applied as well as with and without
noises.

5. Conclusion

In this chapter the problem of determining eigenvalues, and thereby determining
stability, for interconnected and multi-agent dynamic systems is investigated. To
overcome challenges posed by system size, complexity, topology changes, and
incomplete information about subsystems, scalable, data driven estimation and
machine learning algorithms are proposed. First, two distributed algorithms capable
of estimating all the eigenvalues of multi-agent cooperative systems and/or large-scale
interconnected systems, including dominant eigenvalues, was proposed. Additionally,
the input-output stability of subsystems is investigated and the extension of eigen-
analysis is made to study passivity constraints using system matrices or purely input
output data. This analysis was further advanced by leveraging machine learning
algorithms to learn the passivity properties without prior knowledge of the system
dynamics. The effectiveness of the proposed algorithms was demonstrated through
numerical examples. The work presented in this chapter contributes to laying a more
concrete foundation for scalable stability analysis, enabling the use of data-driven and
machine learning algorithms in complex interconnected systems.

Open source code availability

The repository containing the implemented algorithms presented in this chapter
can be acquired at https://forms.gle/z3T75RMRrWM7GSfb9.
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A. Appendix

The gradient descent algorithm to determine the passivity index, as well as the
derivation for the optimal step size of the indirect approach is provided.

A.1 Gradient descent for passivity

To minimize the optimization functions (58), we employ the well-known strategy
of gradient descent. This method involves iteratively updating U by moving in the
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direction opposite to the gradient of the function f at each step, thereby approaching
the minimum of f. Specifically. the passivity gradient descent approach is provided in
Algorithm 3 where an input U is chosen initially, then for k iterations, various pro-
jections of the input are passed to the system to calculate f (U), its gradient ∇f (U),
and the optimal stepsize δ. At the end of each iteration, ∇f (U), and δ are used to
update the input U by Eq. (60).

A.2 Optimal Stepsize δ

To increase the rate of convergence of estimation, the stepsize δ kð Þ can be updated
each iteration. Let f z, where z∈ ϵ, ρ½ � be generalized to f, then the optimal step size is
given by

δ kð Þ ¼ argmin
δ∈ℝ

f U kð Þ � δ kð Þ∇f U kð Þ
� �� �

: (64)

Algorithm 3 Passivity Gradient Descent

1: Choose an initial control input U 0ð Þ ∈ℝ
1�N

2: for k ∈ K do

3: Simulate to get Y
kð Þ
1 ,Y

kð Þ
2 , and Y

kð Þ
3 , under inputs U kð Þ,PU kð Þ and PY

kð Þ
1 .

4: if ρ is given then

5: Calculate ϵ kð Þ ¼ f ϵ Uk
� �

6: Calculate ∇f U kð Þ
� �

¼ ∇f kð Þ
ϵ ¼ 2 Y1þPY2�ρPY3ð Þ

UTU
� 2f ϵ Uð Þ U

UTU

7: Simulate to get Y
kð Þ
4 ,Y

kð Þ
5 , and Y

kð Þ
6 under input ∇f kð Þ

ϵ ,P∇f kð Þ
ϵ and PY

kð Þ
4

8: Calculate the step size δ kð Þ by Eq. (67) with

M1 ¼

U kð Þ
� �T

Y
kð Þ
1 þ PY

kð Þ
2 � ρPY

kð Þ
3

� �

� U kð Þ
� �T

Y
kð Þ
4 þ PY

kð Þ
5 � ρPY

kð Þ
6

� �

� ∇f kð Þ
ϵ

� �T
Y

kð Þ
1 þ PY

kð Þ
2 � ρPY

kð Þ
3

� �

∇f kð Þ
ϵ

� �T
Y

kð Þ
4 þ PY

kð Þ
5 � ρPY

kð Þ
6

� �

2

6
4

3

7
5

M2 ¼
U kð Þ
� �T

U kð Þ � U kð Þ
� �T

∇f kð Þ
ϵ

� ∇f kð Þ
ϵ

� �T
U kð Þ ∇f kð Þ

ϵ

� �T
∇f kð Þ

ϵ

2

6
4

3

7
5

9: Update U kþ1ð Þ ¼ U kð Þ � δ kð Þ∇f kð Þ
ϵ

10: else if ϵ is given then

11: Calculate ρ kð Þ ¼ f ρ Uk
� �

12: Calculate ∇f ρ U kð Þ
� �

¼ ∇f kð Þ
ρ ¼ 2 Y1þPY2�ϵUð Þ

YT
1 Y1

� 2f ρ Uð Þ Y3

YT
1 Y1

13: Simulate to get Y
kð Þ
4 ,Y

kð Þ
5 , and Y

kð Þ
6 under input ∇f kð Þ

ρ ,P∇f kð Þ
ρ and PY

kð Þ
4

14: Calculate the step size δ kð Þ by Eq. (67) with

M1 ¼

U kð Þ
� �T

Y
kð Þ
1 þ PY

kð Þ
2 � ϵU kð Þ

� �

� U kð Þ
� �T

Y
kð Þ
4 þ PY

kð Þ
5 � ϵ∇f kð Þ

ρ

� �

� ∇f kð Þ
ρ

� �T
Y

kð Þ
1 þ PY

kð Þ
2 � ϵU kð Þ

� �

∇f kð Þ
ρ

� �T
Y

kð Þ
4 þ PY

kð Þ
5 � ϵ∇f kð Þ

ρ

� �

2

6
4

3

7
5

M2 ¼
U kð Þ
� �T

PY3 � U kð Þ
� �T

PY6

� ∇f kð Þ
ρ

� �T
PY3 ∇f kð Þ

ρ

� �T
PY6

2

6
4

3

7
5

15: Update U kþ1ð Þ ¼ U kð Þ � δ kð Þ∇f kð Þ
ρ

16: end if

17: Run simulation to get Y
kþ1ð Þ
1 under input U kþ1ð Þ

18: end for
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It follows from Eq. (59) that

f U � δ∇f Uð Þð Þ ¼
1 δ½ �M1 1 δ½ �T

1 δ½ �M2 1 δ½ �T
¼

M1,11 þ 2M1,12δþM1,22δ
2

M2,11 þ 2M2,12δþM2,22δ
2 (65)

and that

1

2
M2,11 þ 2M2,12δþM2,22δ

2
� �2 ∂f

∂δ

¼ M1,12M2,11 �M2,12M1,11ð Þ þ M1,22M2,11 �M2,22M1,11ð Þδ

þ M1,22M2,12 �M2,22M1,12ð Þδ2

≜cþ bδþ aδ2,

(66)

from which optimal value δ ∗ can be solved by setting the above expression equal
to zero. That is,

δ ∗ ¼
�b�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b2 � 4ac
p

2a
, (67)

in which the (smaller) positive solution should be chosen.
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