
A Distributed Method for Detecting Critical Edges and Increasing Edge
Connectivity in Undirected Networks

Deepalakshmi Babu Venkateswaran, Zhihua Qu, and Azwirman Gusrialdi

Abstract— A critical edge is an edge whose removal results
in the associated undirected network becoming disconnected.
Identifying these critical edges and enhancing the correspond-
ing edge connectivity is critical for achieving robustness in net-
work connectivity. While existing methodologies are effective,
they are centralized and rely on global information, which
makes them not scalable with respect to the network size
or its implementation. To address these shortcomings, a fully
distributed approach is introduced in this paper to identify
all the critical edges within an undirected network without
requiring a central coordinating authority. Computationally,
the proposed method has a complexity of O(n), where n is the
number of nodes, which is more efficient when compared to
the centralized approaches. Furthermore, the proposed method
can be used to incrementally increase the network’s edge
connectivity to 2, thus addressing the network’s most vulnerable
edges.

I. INTRODUCTION

A. Motivation and Literature Review

Network robustness is a critical factor in ensuring the
resilience of systems against disruptions, such as link failures
or targeted attacks. One key metric that quantifies this ro-
bustness is edge connectivity, which measures the minimum
number of edges that must be removed to disconnect the net-
work. A network with high edge connectivity can withstand
multiple edge failures without losing overall connectivity.
Conversely, networks with low edge connectivity, particu-
larly those with critical edges (or bridges), are vulnerable,
as the failure of just one such edge can lead to network
disconnection [1]. Identifying and reinforcing these critical
edges is therefore essential to enhancing network resilience.

Distance-first approaches identify critical edges where
each node initiates a search to traverse across the entire
graph [2], [3]. Increasing the robustness of the network
by identifying and reinforcing critical edges has been ad-
dressed through various approaches. [4] explores critical
edge identification and robustness improvement in IoT net-
works through dynamic adjustments and self-competition
mechanisms, while [5] uses betweenness scores for critical
edge and vulnerability assessment in transportation networks.
Some survey papers such as [6], [7] compare methodologies
for network vulnerability assessment, emphasizing disruption

The work of Z. Qu is supported in part by grants by US Department of
Energy’s awards DE-EE0007998, DE-EE0009028, DE-EE0009152, Award
DE-EE0009339, and Award DEAC05-76RL01830. The work of A. Gusrialdi
is supported by the Academy of Finland under project no. 330073.

D. Babu Venkateswaran and Z. Qu are with the Univer-
sity of Central Florida, Orlando, FL 32816, USA. Emails:
deepalakshmi.babuvenkateswaran@ucf.edu, qu@ucf.edu.
A. Gusrialdi is with the Automation and Mechanical Engineering unit at
Tampere University, Finland. Email: azwirman.gusrialdi@tuni.fi

risks. Some approaches that improve the network robustness
without identifying the critical edges include [8], [9] and
they use different optimization algorithms. However, all of
the above approaches are centralized in nature. Leveraging
the scalability, fault tolerance, and adaptability of distributed
algorithms [10], we aim to design a fully distributed ap-
proach that enhances network connectivity and resilience.

B. Statement of Contributions

The proposed distributed method consists of four algo-
rithms. First, the standard maximum/minimum consensus
algorithm is judiciously applied to identify not just network
connectivity [11], [12], but also the whole neighboring
structure, which includes every node’s neighbors and their
minimum distances within the network. The second algo-
rithm ensures connectivity of the network, by adding edges in
a certain order if the original is not connected. Third, a novel
distributed algorithm is developed to determine whether a
specific edge belongs to a cycle in the network, and it can
be used to detect all critical edges of the network. The final
algorithm is to perform edge addition strategically so that all
critical edges are eliminated.

These four algorithms form a distributed method that
fortifies network connectivity, ensuring resilience against link
failures and/or Denial of Service (DoS) attacks in networks
such as the Internet, multi-agent systems, robotics and mo-
bile communication networks, networked control systems
[13], smart grids [14], and cyber-physical systems [15].
Our approach is applicable to real-world scenarios where
local communication is the norm, such as in multi-agent
systems and smart grids. In these applications, network
robustness can be achieved through local communication,
and connectivity can be maintained under denial of service
attacks.

II. PROBLEM FORMULATION

Consider an undirected network of n nodes described by
G = (N , E) where N is the set of integers 1 to n, and E is the
set of edges between the nodes. Node i has a neighborhood
set Ni = {j ∈ N : eij ∈ E} indicating direct communication
links.

A network G is said to be connected if any pair of
nodes is linked by a path. The neighboring structure of a
node consists of its neighbors and their minimum distances,
illustrating how nodes are interconnected within the network.
A cycle in the network is a closed path that returns to the
starting node without retracing any edge. A critical edge is
an edge whose removal results in the disconnection of the

network. The edge connectivity of a network is the minimum
number of edges that must be removed to disconnect it,
serving as a measure of the network’s robustness. A network
with edge connectivity 1 has at least one critical edge, while
a network with edge connectivity 2 or higher is more robust,
as it lacks critical edges and can withstand the removal of
multiple edges.

Our objective is to determine the network’s neighboring
structure as well as all the critical edges, if any. The proposed
approach must be distributed and yield the result in finite
steps. To facilitate its development, the following assumption
is made.

Assumption 1. Every node in G is uniquely indexed from
1 to n. Every node knows the indices of its neighbors and
the total number of nodes n. Furthermore, when necessary,
a node can establish a new edge with another node through
communicating with its relevant neighbors and dispatching
network addresses.

In this paper, the global information of the graph is
gradually built through the proposed multi-step processes
whose implementation is fully distributed. As these processes
evolve, each node incrementally accumulates information
about the rest of the nodes via its local neighbors. By the
end of these distributed, finite-step algorithms, each node has
complete information about neighboring structure, critical
edges, and potential communication edges to be added. No
global information is required beyond the simple indexing
requirement in Assumption 1.

III. DISTRIBUTED NETWORK DISCOVERY

In this section, the following distributed algorithms are
presented:

• An n-step algorithm to estimate the connectivity of
the network and to determine the neighbor structure,
including the distance from one node to every other
node in the network.

• An n-step algorithm to ensure the connectivity of the
network by adding edges in an ordered fashion.

• A 2-step algorithm to determine the existence of criti-
cal edges/nodes by identifying the absence of cycle(s)
containing the specific edge or alternate paths between
any pair of two neighboring nodes.

• If critical edge(s) is(are) identified, an n-step distributed
algorithm to add a minimum number of new edges to
eliminate critical edges and increase edge connectivity
to 2.

A. Distributed Identification of Node’s Neighbor Structure

For each node i ∈ N , consider the following two
states: ξi(k) = [ξi,1(k) · · · ξi,n(k)]

T ∈ Rn denoting
the node i’s estimate of its in-neighbors, and ωi(k) =
[ωi,1(k) · · · ωi,n(k)]

T ∈ Rn denoting node i’s estimate of
its neighbor structure.

The distributed maximum and minimum protocols operate
over n consecutive iterations, defined as follows for each

iteration k = 0, · · · , (n− 1):

ξi,j(k + 1) = max
l∈Ni∪i

ξl,j(k), j ∈ N , (1)

ωi,j(k + 1) =

ωi,j(k) if ξi,j(k + 1)

= ξi,j(k),

minl∈Ni(ωl,j(k) + 1) if ξi,j(k + 1)

> ξi,j(k)

(2)

where Ni is the neighbor set of the node i and the initial
conditions are given as

ξi,j(0) =

{
1, if j = i

0, otherwise
ωi,j(0) =

{
0, if j = i

∞, otherwise
(3)

Theorem 1: Consider an undirected network G in which
each node i executes two concurrent distributed n-step
algorithms: (1) and (2). Then, the following conclusions can
be drawn:

1) Node j is one of the pth neighbors of node i: that is,
{j} ∈ N (p)

i if ωi,j(n) = p > 0.
2) Each node i knows that the network G is connected, if

and only if all of ξi,j(n) elements are non zero: that is,

ξi,j(n) ̸= 0, ∀j ∈ N . (4)

Proof: At k = 0, ξi,j(0) is set to 1 if j = i and 0
otherwise, indicating each node is initially only aware of
itself. Correspondingly, ωi,j(0) is initialized to 0 for itself
and to ∞ for all other nodes, indicating that the distance
to itself is known to be zero, and the distance to any other
nodes are unknown.

For each iteration (k+1), it follows ξi,j(k+1) updates to
1 if j is reachable from i within k+ 1 steps, determined by
neighbor l of i having ξl,j(k) = 1. If ξi,j(k + 1) increases
(indicates new reachability), ωi,j(k + 1) updates to capture
the shortest path distance from i to j, that is the minimum
of ωl,j(k) + 1 across all neighbors l of i that can reach j,
thereby indicating the path length.

It can be seen that ξi,j(k) is binary and non-decreasing.
Note that ωi,j(k) will remain zero or ∞ until ξi,j(k) changes
from 0 to 1. In addition, we know by induction that, if {j} ∈
N (p)

i , ξi,j(k) switches from 0 to 1 precisely at step k = p.
Afterwards, ξi,j(k + 1)− ξi,j(k) ≡ 0, and invariant, and so
is ωi,j . Accordingly, the conclusion is drawn.

Algorithm 1 operates over n steps (k = 1, · · · , n), by
each node i to identify its neighbor structure in terms of its
pth neighbor set N (p)

i by executing update laws (1) and (2).
The following observations are worth noting. First, net-

work G is connected if ωi,j(n) > 0 for all i ∈ N and for all
j ̸= i. Second, if there are alternate paths between nodes i
and j, the result ωi,j(n) from algorithm (2) corresponds to
the shortest path.
Example 1: For network G1 in Fig. 1(a), it follows that, at
k = 8,

ω4(8) = [1, 1, 1, 0, 1, 2, 2, 3]T ,

which shows N (1)
4 = {1, 2, 3, 5}, N (2)

4 = {6, 7}, and
N (3)

4 = {8}.
For G2 in Fig. 1(b), it follows that

ω4(8) = [1, 1, 1, 0, 1, 2, 2, 2]T ,

which implies N (1)
4 = {1, 2, 3, 5} and N (2)

4 = {6, 7, 8}. △

(a)

(b)

Fig. 1: (a) Network G1 with critical edges (red dotted lines),
and (b) Network G2 without critical edge by adding an edge
(green dot-dashed line)

B. Distributed Algorithm to Ensure Connectivity

Consider a modified version of update law (2)) for steps
k = n, · · · , (2n− 1):

ωi,j(k + 1) =

ωi,j(k) if ξi,j(k + 1)

= ξi,j(k),

ωi,i∗(k) + ωj∗,j(k) if ξi,j(k + 1)

> ξi,j(k).

(5)

where ξi,j(k) is obtained using update law (1).
If the original network is not connected, every node in the

network becomes aware of this fact at k = n. Specifically, if
node i does not have node j in its neighboring structure (in
the sense that ξi,j(n) = 0), node i knows that the network
is not connected. Then, the node i∗ with the highest index
within the connected neighbors is identified, that is

i∗ = max{j | ξi,j(n) = 1}.

Then, i∗ identifies its pair j∗, that is not within its connected
neighbors as,

j∗ = max{j | ξi,j(n) = 0}.

A new edge from i∗ to j∗ is added, which upgrades the
network towards being connected. The pseudo-code for this
is given in Algorithm A for easy reference.

In the worst case that there is no edge in the original
network, Algorithm A can take n − 1 steps to ensure
connectivity. For this reason, even when starting with a
connected network, (5) and (1) need to run until k = 2n
so that there is no need for central coordination.

Algorithm 2 operates by running the update laws (5) and
(1) for n steps. After identifying the nodes i∗ and j∗ in

each iteration of Algorithm A, the update rules (5) and (1)
should be immediately applied to ensure that the latest values
of ξi,j(k) are used for accurate distance calculations and
network updates. During the first (nc − 1) steps, where nc

is the number of disjoint connected components, Algorithm
A upgrades the network to ensure connectivity. By k = n+
nc − 1, the network is connected, and by k = 2n, every
node in the network recognizes this connectivity within its
neighboring structure.

Algorithm A Distributed Connection of Non-Connected
Network
Input: ξi,j(k) at k = n

1: while ξi,j(k) = 0 for any j do
2: identify node i∗ = max(j) with the highest index

where ξi,j(k) = 1.
3: if i is i∗ then
4: find node j∗ = max(j) with the highest index

where ξi,j(k) = 0.
5: establish a link with node j∗.
6: end if
7: k = k + 1
8: end while

Output: The network connectivity is established.

C. Distributed Determination of Critical Edges

In this section, we present a distributed 2-steps algorithm
(a total of (2n+ 2)-steps when combined with the previous
algorithms) for the ith node to determine whether its asso-
ciated edge eil to its first neighbor node l is a critical edge.
To facilitate this, we employ a measure, ∆(il)

i , calculated at
the (n+1)th iteration, to evaluate the presence of alternative
pathways between any two directly connected nodes, i, and
a neighbor l ∈ N i(1). This measure is defined as follows:

∆
(il)
i = [∆

(il)
i,1 · · · ∆(il)

i,n]
T , ∆

(il)
i,j = ωi,j(n)− ωl,j(n),

(6)

where ωi,j(n) and ωl,j(n) represent the computed shortest
distances from node j to nodes i and l, respectively, obtained
after n iterations of (2).

In an undirected and connected network, the value of ∆(il)
i,j

for each pair of neighboring nodes i and l, with respect to any
other node j, can only be −1, 0, or 1. A value of −1 indicates
that node j is relatively closer to node i than to node l, and
conversely, a value of 1 suggests node j is nearer to node l. A
zero value implies that node j is equidistant from both nodes
i and l. Through the analysis of these distance increments,
we propose a lemma and a theorem that provide criteria for
distributively identifying alternate paths and critical edges
within the network, thereby enhancing our understanding of
the network’s robustness to potential disruptions.
Lemma 1: Given an undirected and connected network G,
consider an edge eil connecting nodes i and l. A node,
denoted as k, possesses alternate paths to both i and l,
bypassing eil, if and only if at least one node j (potentially

including k itself and residing within the relevant cycle)
satisfies one of the two conditions below:

1) Node j is equidistant to i and l

∆
(il)
i,j = 0, (7)

2) There exist nodes i′ ∈ Ni and l′ ∈ Nl such that

∆
(il)
i,j ̸= 0, =⇒ ∆

(ii′)
i,j = ∆

(ll′)
l,j = 1. (8)

indicating j is on a path that connects i and l through
nodes i′ and l′, thus forming a cycle that includes eil.

Proof: The proof is organized into two main parts: sufficiency
and necessity.
Sufficiency: If there exists a node k with alternate paths to
i and l that do not pass through eil, then at least one cycle
involving eil and other edges is present in the network. This
cycle can be detected by examining distances from nodes in
the network to i and l:

1) If ∆
(il)
i,j = 0 for some node j, it indicates that j is

equidistant from both i and l. This condition signifies
the presence of a cycle that j is a part of, where j is
on an alternate path that circumvents eil, showing the
cycle’s existence without directly counting nodes.

2) Let’s consider nodes i′ and l′, where i′ ∈ Ni and l′ ∈ Nl

belong to the cycle. There exists a node j that has an
equal distance to the cluster consisting of nodes i and
l. This implies that departing from either node i or l
toward node j results in the distance of the neighbor
structure decreasing in both directions, as illustrated in
Fig. 2(a). Consequently, both ∆

(ii′)
i,j and ∆

(ll′)
l,j are equal

to 1, irrespective of the sign of ∆
(il)
i,j . This condition

confirms that j lies on a cycle that includes both i and
l, as well as their neighbors, indicating the existence of
alternate paths.

Necessity: Assume no alternate paths exist between i and
l except through eil. Removing eil disconnects i and l,
showing eil is a critical edge. In such a scenario, for any node
j not equal to i or l, it’s impossible to have ∆(il)

i,j = 0 because
j cannot be equidistant to i and l without eil. Additionally,
you cannot find nodes i′ ∈ Ni and l′ ∈ Nl satisfying
∆

(ii′)
i,j = ∆

(ll′)
l,j = 1 for any j, as there are no cycles including

eil and other edges that could provide such alternate paths.
Furthermore, we will have ∆

(ii′)
i,j ∗ ∆

(ll′)
l,j = −1 (i.e., they

must have different signs), since leaving the cluster of nodes
i and l has opposite effects: closer to node j in one direction,
and farther in the other, as shown in Fig. 2(b).

(a) (b)

Fig. 2: (a) Edge eil is a part of the cycle formed by alternate
paths, and (b) Edge eil is not a part of any cycle

Theorem 2: Given an undirected and connected network G,
suppose each node implements a single-step computation (6),

in conjunction with the n-step protocols (1) and (2). An edge
eil is a critical edge within this framework if and only if, for
every node j ∈ N and for all adjacent nodes i′ ∈ Ni and
l′ ∈ Nl, the following condition is met:

∆
(il)
i,j ̸= 0, and {∆(ii′)

i,j , ∆
(ll′)
l,j } ≠ {1, 1}. (9)

Proof: Condition (9) explicitly negates the scenarios de-
scribed in (7) and (8) from Lemma 1, indicating eil lacks
alternative paths, thus establishing its criticality. Sufficiency
arises directly from Lemma 1: if no conditions for non-
criticality are met, eil is critical as it is the sole link between
i and l. Necessity is self-evident; without eil, connectivity
between i and l breaks, signifying its critical.

This proof, by linking the absence of alternate paths to
the unique conditions specified, conclusively establishes the
criteria for determining the critical nature of an edge within
the network. □
Example 2: For G2 in Fig. 1(b), it follows that, at k = 9,

∆
(45)
4 = [−1,−1,−1,−1, 1, 1, 1, 0]T ,

∆
(41)
4 = [1, 0,−1,−1,−1, 0,−1, 1]T ,

∆
(56)
5 = [0,−1,−1,−1,−1, 1, 0, 1]T .

Note that ∆
(41)
4,8 = ∆

(56)
5,8 = 1 which implies that the edge

e4,5 is not a critical edge.
On the other hand, from G1 in Fig. 1(a),

∆
(45)
4 = [−1,−1,−1,−1, 1, 1, 1, 1]T ,

∆
(41)
4 = [1, 0,−1,−1,−1,−1,−1,−1]T ,

∆
(56)
5 = [−1,−1,−1,−1,−1, 1, 1, 1]T ,

It is straightforward that (9) is satisfied for all i′ and l′ (e.g.,
∆

(57)
5) not explicitly shown, thus indicating that edge e45 is

critical. △
Algorithm 3 runs for 2 steps where each node can identify

the set of all its associated critical edges from (9), denoted
by N c

i ⊂ Ni for the ith node in connected graphs.

D. Distributed Edge Addition

This section introduces an algorithm to enhance network
robustness by strategically adding new edges to eliminate
critical ones, thereby reducing vulnerability to link failures.
Our approach focuses on connecting distant nodes within
acyclic parts of the network—specifically, those separated by
critical edges—to both preserve network connectivity under
attack and minimize the additional connections required.
By identifying the most remote pairs of nodes adjacent to
each critical edge, called augmentation nodes, the algorithm
ensures these nodes establish new links. Through local prop-
agation, the augmentation nodes receive the information and
complete the planned edge addition, which has a maximum
of n + 1 steps (and, when combined with the previous
components, have a total of 3n+ 3 steps).

The first step of the n-step edge addition algorithm, that
is Algorithm 4 is executed only by individually each pair
of nodes associated with a critical edge, say {i, l} with
i ∈ N c

l and l ∈ N c
i , where N c

i refers to corresponding

neighbor set associated with critical edges. The goal of this
step is to identify the corresponding augmentation nodes,
{i′, l′} ∈ N r

i , where N r
i represents the augmentation nodes

(or reconnection nodes) that are strategically chosen as the
ones farthest (with respect to the neighbor structure) from
the critical edge eil. If there exist multiple nodes at the same
distance, the ones with the smallest index are chosen, and it
reduces the number of edges added.

{i′, l′} ∈ N r
i if (11) or (12) or (13) is true, (10)

where

{
µi = |Ni| > 1
µl = |Nl| > 1

and

i ∈ N c

l , l ∈ N c
i ,

∆
(il)
i,i′ = ∆

(li)
l,l′ = −1

ωi,i′ = maxk ωi,k,
ωl,l′ = maxk ωl,k,

, (11)

{
µi = |Ni| = 1
µl = |Nl| > 1

and

i ∈ N c

l , l ∈ N c
i ,

∆
(li)
l,l′ = −1

i′ = i,
ωl,l′ = maxk ωl,k,

, (12)

{
µi = |Ni| > 1
µl = |Nl| = 1

and

i ∈ N c

l , l ∈ N c
i ,

∆
(il)
i,i′ = −1

ωi,i′ = maxk ωi,k,
l′ = l,

, (13)

and N r = ∪i∈NN r
i is the augmentation action set to be

found distributively. Note that µi = |Ni| = µl = |Nl| = 1 is
the trivial case of a two-node network and hence is excluded
from consideration.

The next (n− 1) steps of the Algorithm 4 is to propagate
N r

i to all the nodes so they all have access to N r as follows:

N r
i (k + 1) = ∪l∈Ni∪{i}N r

l (k), (14)

where k = (2n+2), · · · , (3n+1), ∪ is the union operation of
sets containing non-ordering pairs (that is, if {i, j} ⊂ N r

l (k),
then {j, i} ⊂ N r

l (k)), and N r
i (3n + 2) = N r

i is given by
(10).

And, as the final step, edge addition is accomplished by the
pairs of nodes identified in N r to complete their connection.
Remark: While the proposed edge addition algorithm fo-
cuses on reconnecting farthest nodes, alternative methods
such as random edge addition or distributed optimization
algorithms could be explored to achieve similar goals while
potentially reducing the risk of long communication paths,
though the current algorithm prioritizes robust reconnection
over minimizing the length or the number of edges added.
Theorem 3: Consider connected network G in which each
node executes distributed n-step algorithm represented by
equations (10) and (14), following the distributed 2n + 2-
step algorithms, 1,2 and 3. Then, the resulting network has
no critical edge or nodes.
Proof: The algorithm of (10) and (14) ensures there is no
critical edge. Hence, the resulting network has no vulnera-
bility under one link failure anywhere in the network.

Algorithm B Distributed Edge Addition

Input: Node with unique index i: network size n and
neighbor set Ni.

1: Run Algorithm 1 and 2 to ensure connectivity Result:
For node i, ωi(2n) provides its neighbor structure.

2: For each of its neighbors (i.e., l ∈ Ni), calculate ∆
(il)
i,j

using (6) and locally identify critical edges using (9).
Result: At the (2n + 2)nd step local determination of
critical edges/nodes.

3: If i is a critical node, use (10) to determine the augmen-
tation nodes for each pair of its critical node neighbors.
Result: At the (2n + 3)th step, all the augmentation
nodes are locally identified as N r

i .
4: Use max-consensus protocol (14) to distributively deter-

mine set N r. Result: At the (3n+2)nd step, every pair
of augmentation nodes knows the need to add an edge
between each other.

5: If i is in N r, reach out to its pair l to make an edge.
Result: At the (3n+3)rd step, edge addition is complete.

Output: Loop the above steps and the resulting network
is connected and has no critical node/edge to improve
robustness.

E. Complexity and Robustness

All four algorithms proposed in this paper operate in a
finite number of steps proportional to n. Specifically, Algo-
rithm B completes its execution in 3n + 3 steps, indicating
that the overall time complexity of the method is O(n).
This complexity is derived from the distributed nature of
the algorithms, where each node performs computations in
parallel across the network. Since each step involves linear
updates to n-dimensional vectors according to the previous
and current time instants, the computational effort per node
is linear, ensuring that the time complexity remains O(n).

The system’s robustness can be measured in terms of
algebraic connectivity, which is the second smallest eigen-
value (λ2) of the graph Laplacian matrix. A higher λ2

indicates better connectivity. Additionally, edge connectivity
provides another critical measure of the system’s robustness.
This measure denoted as κ′(G) for a network G, represents
the minimum number of edges that must be removed to
disconnect the network [16].
Example 3: For G1 in Fig. 1 (a) with critical edges, the λ2 =
0.5083 and for G2 in Fig. 1 (b) without critical edges λ2 =
0.7933. Similarly κ′(G1) is 1, while κ′(G2) is 2. △

IV. ILLUSTRATIVE EXAMPLE

The following section presents an example and simulation-
based demonstration of the proposed algorithms. Consider a
network with 15 nodes, connected in a graph, say Ge as
shown in 3, with a total of 20 edges.

The Algorithm 1 executes for 15 steps. By the 15th step,
each node i determines its neighbor structure of the network
Ge through equation (2). It also identified that Ge is not
connected. Then within the next 15 steps Algorithm 2 adds
a new edge to establish connectivity, as shown in Fig. 4(a).

Fig. 3: A random network Ge, of 15 nodes and 20 edges

(a)

(b)

Fig. 4: Augmented network G′
e, as a result of (a) Algorithm

2 (b) Algorithm 4

In the next 2 steps, each node i identifies the critical edges
connected to i. The critical edges identified by each node i
are as follows:

N c
1 = {(1, 4)} N c

3 = {(3, 7)} N c
4 = {(4, 1)}

N c
7 = {(7, 3)} N c

7 = {(7, 14)} N c
9 = {(9, 15)}

N c
14 = {(14, 7)} N c

15 = {(15, 19)}

and for the rest of the nodes N c
i = {∅}

The next 1 step (33rd step) is to identify the corre-
sponding augmentation nodes, which is performed only by
the nodes associated with the critical edges. That is, nodes
{1, 3, 4, 7, 9, 14, 15} and it follows:

N r
1 = {(1, 3)} N r

3 = {(3, 12)} N r
4 = {(3, 1)}

N r
7 = {(3, 12) N r

9 = {(9, 1)} N r
14 = {(12, 3)}

(12, 3)} N r
15 = {(1, 9)}

In the following 14 steps, the information is propagated to
all the other nodes, and the augmentation node set for each
node is N r

i = {(1, 3), (3, 12), (1, 9)}.
In the final 48th step, every node present in N r reaches

out to its pair and forms the edge. The augmented network
is shown in Fig. 4.

CONCLUSION

In conclusion, this paper introduces a novel dis-
tributed method to enhance edge connectivity by identify-
ing/achieving connectivity and reinforcing/removing critical
edges. The method includes a four-stage process of neighbor-
ing structure discovery, connectivity assurance, critical edge
identification, and fortification of critical edges. Each of the
four stages involves a distributed algorithm, and the result

is that the edge connectivity is improved from 0 or 1 to 2.
Hence, the four distributed algorithms together significantly
improve the robustness of any undirected network, and the
total computational complexity is of O(n). The only global
knowledge required is the network’s total number n of
nodes, which are uniquely indexed from 1 to n. Future
work may consider edge connectivity of more than 2 (i.e.,
p-order edge connectivity), as this may offer insights into
the algorithm’s performance under more complex scenarios
and potential applications in more robust and fault-tolerant
network designs.

REFERENCES

[1] A.-K. Wu, L. Tian, and Y.-Y. Liu, “Bridges in complex networks,”
Phys. Rev. E, vol. 97, p. 012307, Jan 2018.

[2] L. Dhulipala, G. E. Blelloch, and J. Shun, “Theoretically efficient par-
allel graph algorithms can be fast and scalable,” in Proceedings of the
30th on Symposium on Parallelism in Algorithms and Architectures,
ser. SPAA ’18. New York, NY, USA: Association for Computing
Machinery, 2018, p. 393–404.

[3] P. Chaudhuri, “An optimal distributed algorithm for finding articulation
points in a network,” Computer Communications, vol. 21, no. 18, pp.
1707–1715, 1998.

[4] N. Chen, T. Qiu, Z. Lu, and D. O. Wu, “An adaptive robustness
evolution algorithm with self-competition and its 3d deployment for
internet of things,” IEEE/ACM Transactions on Networking, vol. 30,
no. 1, pp. 368–381, 2022.

[5] M. A. P. Taylor and G. M. D’Este, Transport Network Vulnerability: a
Method for Diagnosis of Critical Locations in Transport Infrastructure
Systems. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007, pp.
9–30.

[6] T. H. Grubesic, T. C. Matisziw, A. T. Murray, and D. Snediker, “Com-
parative approaches for assessing network vulnerability,” International
regional science review, vol. 31, no. 1, pp. 88–112, 2008.

[7] S. Freitas, D. Yang, S. Kumar, H. Tong, and D. H. Chau, “Graph vul-
nerability and robustness: A survey,” IEEE Transactions on Knowledge
and Data Engineering, vol. 35, no. 6, pp. 5915–5934, 2023.

[8] H. Chan and L. Akoglu, “Optimizing network robustness by edge
rewiring: a general framework,” Data Min. Knowl. Discov., vol. 30,
no. 5, p. 1395–1425, sep 2016.

[9] J. S. Baras and P. Hovareshti, “Efficient and robust communication
topologies for distributed decision making in networked systems,” in
Proceedings of the 48h IEEE Conference on Decision and Control
(CDC) held jointly with 2009 28th Chinese Control Conference, 2009,
pp. 3751–3756.

[10] U. Bodkhe, D. Mehta, S. Tanwar, P. Bhattacharya, P. K. Singh, and W.-
C. Hong, “A survey on decentralized consensus mechanisms for cyber
physical systems,” IEEE Access, vol. 8, pp. 54 371–54 401, 2020.

[11] B. M. Nejad, S. A. Attia, and J. Raisch, “Max-consensus in a max-
plus algebraic setting: The case of fixed communication topologies,” in
2009 XXII International Symposium on Information, Communication
and Automation Technologies, 2009, pp. 1–7.

[12] M. W. S. Atman and A. Gusrialdi, “Finite-time distributed algorithms
for verifying and ensuring strong connectivity of directed networks,”
IEEE Transactions on Network Science and Engineering, vol. 9, no. 6,
pp. 4379–4392, 2022.

[13] A. Gusrialdi and Z. Qu, Resilient Hierarchical Networked Control
Systems: Secure Controls for Critical Locations and at Edge. Cham:
Springer International Publishing, 2022, pp. 95–119.

[14] J. Stoustrup, A. Annaswamy, A. Chakrabortty, and Z. Qu, Smart Grid
Control: Overview and Research Opportunities, 1st ed. Springer
Publishing Company, Incorporated, 2018.

[15] A. Cardenas, S. Amin, B. Sinopoli, A. Giani, A. Perrig, S. Sastry
et al., “Challenges for securing cyber physical systems,” in Workshop
on future directions in cyber-physical systems security, vol. 5, no. 1,
2009.

[16] F. R. Chung, Spectral graph theory. American Mathematical Soc.,
1997, vol. 92.

