
Automatic Robot Path Planning for Active Visual Inspection on
Free-Form Surfaces

Osama Tasneem1 and Roel Pieters1

Abstract— Visual inspection is a crucial yet time-consuming
task across various industries. Numerous established methods
employ machine learning in inspection tasks, necessitating
specific training data that includes predefined inspection poses
and training images essential for the training of models. The
acquisition of such data and their integration into an inspection
framework is challenging due to the variety in objects and
scenes involved and due to additional bottlenecks caused by
the manual collection of training data by humans, thereby
hindering the automation of visual inspection across diverse
domains. This work proposes a solution for automatic path
planning using a single depth camera mounted on a robot
manipulator. Point clouds obtained from the depth images are
processed and filtered to extract object profiles and transformed
to inspection target paths for the robot end-effector. The
approach relies on the geometry of the object and generates an
inspection path that follows the shape normal to the surface.
Depending on the object size and shape, inspection paths can
be defined as single or multi-path plans. Results are demon-
strated in both simulated and real-world environments, yielding
promising inspection paths for objects with varying sizes and
shapes. Code and video are open-source available at: https:
//github.com/CuriousLad1000/Auto-Path-Planner

I. INTRODUCTION

Visual inspection is an indispensable part of any industry
[1]. From product quality control to the maintenance of
machines, visual inspection plays a vital part in improving
the overall production yield and reducing the operation and
maintenance costs. Due to the complexity of products and
machines, the process of visual inspection is generally done
by humans, causing downtime and delay in production and,
at the same time, exposing the person to hazardous working
environments [2]. However, in many cases, manual visual
inspection is difficult to achieve, due to issues in accessibility
or the high costs involved, creating demand for automated
robotic solutions (see Fig. 1). For example, in the paper mill
industry, suction rolls play a vital part in the production of
paper from pulp. Based on the stage of use, they perform
multiple functions including transportation of the sheet of
paper, removing water from the paper, and dewatering the
felt. This process can result in the blockage of the hundreds
of thousands of holes in the suction roll. Current practices
involve manual inspection of these rollers, which is time-
consuming and ergonomically unfriendly. As the holes are
small and narrowly spaced, operators are required to inspect
the holes closely with special lighting equipment. Current
growth in technologies has led to new possibilities where

1Cognitive Robotics group, Unit of Automation Technology and Me-
chanical Engineering, Tampere University, 33720, Tampere, Finland;
firstname.surname@tuni.fi

Fig. 1: Automatic path planning utilizes a robot with eye-in-
hand camera to extract an inspection path that follows the
geometry of the object.

the task of visual inspection can be automated with sufficient
accuracy [3] by utilizing machine learning techniques.

However, the introduction of automation in inspection
tasks does not intend to completely replace the human
but to reduce the laborious task assigned to humans and
improve the overall efficiency and accuracy of the system
[1]. Techniques such as deep learning [4], [5], [6] are able to
recognize various forms of anomalies that a human inspector
used to look for and the implementation of such methods
has produced better performance than humans on various
applications such as object recognition [7], [8] and sketch
search [9]. The accuracy of machine learning techniques
being used to detect object anomalies heavily rely on the
quality of data for training and validation. Collection of
such data can become more difficult due to the size, shape,
and location of the object. This is especially true for the
inspection of larger infrastructures such as buildings and
tunnels. Current data collection methods involve placing
multiple cameras at different angles around an object [10]
or placing a single camera [11] on top and using an array
of mirrors around the object to obtain different views [12].
As products and machines used in factories come in different
sizes and shapes, re-arrangement of vision sensors is required
to correctly align and gather sample data for training and
validation. This introduces another bottleneck in the process
to automate visual inspection.

This paper proposes an approach that utilizes a single
RGB-D camera, mounted on a robot manipulator to aid
in the automation of the inspection process (see Fig. 1).

https://github.com/CuriousLad1000/Auto-Path-Planner
https://github.com/CuriousLad1000/Auto-Path-Planner

Visual observations of the geometry of the object and/or
the scene then determine the path for the robot to follow to
perform visual inspection. Summarizing, the contributions of
this work are:

• an approach to filter, process and extract an object
profile from depth images.

• object segmentation using clustering to segregate the
environment, multiple objects within the field of view.

• the generation of a path plan from the object profile for
visual inspection.

• evaluation of the approach with robot and objects of
various shapes in simulated and real-world experiments.

The paper is organized as follows. We introduce the paper in
Section I. A brief overview of the current developments in
path planning is given in Section II, which describes the state
of the art and their limitations. The proposed method that
extracts an inspection path given a point cloud is described
in Section III and its results are reported in Section IV. The
results are discussed along with its limitations in Section V.
Section VI concludes the work.

II. RELATED WORK

This section provides an overview of related work in
context to robot perception and path planning.

Magnus et al. [13] introduced a methodology in which
the operator manually guides the robot along a predefined
trajectory, ensuring compliance with joint constraints. The
hand-guiding technique might be suitable for motion around
objects during the inspection of smaller objects. However, it
is not feasible to inspect larger objects using such technique
due to time constraints and precision requirements of the
task. Lončarević et al. [14] proposed an approach in which
they leveraged existing CAD models of the target object to
generate inspection trajectories around it. The operator is re-
quired to select the correct CAD model with the desired point
along the required inspection path. This approach proves
advantageous when a CAD model of the target is readily
accessible, however, for inspecting unknown objects, an
alternative methodology is needed. One approach, as detailed
by Roberts et al. [15], involves the utilization of a trajectory
optimization model. The authors applied this model to a
drone for the purpose of conducting aerial 3D scanning. The
method generated drone trajectories to capture and recreate
a ’high-fidelity 3D model’ of large structures. Another ap-
proach presented by Monica et al. [16] centers on Next Best
View (NBV) planning, leveraging surfel representations of
the environment, in lieu of intricate ray casting operations.
The results demonstrate that a score function based on surfels
is not only more computationally efficient but also achieves
comparable outcomes in terms of reconstruction quality and
completeness. Naazare et al. [17] also proposed an online
NBV planner for a mobile manipulator robot. The proposed
system is designed to facilitate comprehensive exploration
as well as user-oriented exploration of an environment,
including the inspection of regions of interest. A weighted
sum-based information gain function was used to tackle
exploration challenges characterized by multiple objectives.

While NBV planners excel in robustly exploring unknown
environments, it’s important to note that these algorithms
can be computationally expensive. Conversely, Fan et al.
[18] presented an automated solution for 3D object acqui-
sition. Their system implemented adaptive view planning
and accommodated objects of varying scales. To devise the
optimal path for a 2-axis manipulator, they formulated the
path planning algorithm as a Traveling Salesman Problem.
The utilization of point clouds as a source of information
appears to be a promising and effective approach. However,
dense point clouds result in large data volumes and higher
processing times. In their work, Arav et al. [19] introduced
a context-aware subsampling technique, which effectively
preserved the high-resolution details of objects while elimi-
nating data from less critical regions. Research conducted by
Yu et al. [20] introduces a point cloud modelling and slicing
algorithm designed to address free-form surfaces, specifically
for the application of spray painting with a robot manipulator.
This algorithm not only preserved the edges within the
point cloud but also identified the optimal slicing direction
and optimized the movement speed of the spray gun. The
spraying trajectory points were based on the cross-section
contour points. Wang et al. [21] introduced a path planning
algorithm for robotic spray painting that is based on point
cloud slicing. The authors employed an adaptive approach
to determine the direction of the slice plane, in conjunction
with the intersection-projection joint segmentation method,
to obtain the points required for constructing the spraying
path.

In comparison to the related studies, our approach does not
require a CAD model, but generates a path from point cloud
data by selecting and combining point clouds with the most
data through a majority vote mechanism. The combined point
cloud is refined with a hidden point removal process and
downsampled to predetermined resolution. Surface normals
are then estimated using covariance analysis of Eigen vectors
of samples within the local neighborhood of points. Follow-
ing, a clustering procedure employs DBSCAN clustering [22]
to segment and extract valuable objects, after which a visual
inspection path is planned.

III. METHODS

This section discusses the overall process in detail, with
Alg. 1 and 2 as main methods. Alg. 1 describes the steps
from the acquisition of a point cloud to the generation of its
profile. Then, Alg. 2 describes the generation of robot target
poses from this point cloud profile. Fig. 2 depicts a block
diagram that highlights the information flow between various
hardware and software blocks used and gives a general
graphical overview of the system.

A. Point cloud acquisition and sampling

Data is collected via a depth camera in the form of a
point cloud. To account for noise and enhance robustness, we
introduce a sampling filter (step 3 in Alg. 1) that captures
multiple frames of color and depth images (I RGB , I D) to
generate multiple point clouds, as stored in PCD a [] array.

Fig. 2: Block diagram depicting the flow of information between various modules.

Algorithm 1: Point cloud processing, clustering, and
profile generation.

Parameters:
s: number of point clouds to sample
I RGB : RGB image frame from camera
I D : Depth image frame from camera
P CD : container to hold point cloud
PCD a []: array for all sampled PCD
P CDp: Final object PCD profile

Input : colour and depth frame, s
Output : Filtered point cloud profile P CDp

STEP 1: Select initial pose of the robot.
STEP 2: Object is in FoV of camera.
STEP 3: Sample point clouds.
foreach s do

I RGB , I D grabframe()
P CD GeneratePointCloud(I RGB , I D)
P CD FilterPCD(P CD)
PCD a [] P CD

STEP 4: Select point clouds with a majority of
similar number of points.

idx list[] SelectedPointClouds(PCD a [])
foreach idx list[] do

P CD P CD + PCD a [idx]

STEP 5: Process point cloud and estimate normals.
P CD HiddenPointRemoval(P CD)
P CD VoxelDownSample(P CD)
P CD EstimateNormals(P CD)
STEP 6: Generate clusters and object profile.
Clusters ClusterPCD(P CD)
P CD ClusterSelection(Clusters)
P CDp CroppedPCD(P CD)

These multiple point clouds are then combined to create a
better distributed and more dense version of the point cloud
data (P CD).

B. Point cloud processing

The acquired point cloud P CD undergoes processing
to eliminate undesired elements, including the ground, any
visible portions of the robot within the frame, and any
other unwanted objects (step 3 in Alg. 1). This filtering
procedure is iteratively applied over a predetermined set of

Algorithm 2: Target generation using filtered profile.
Parameters:

np: Normalized normals in P CDp

uz : Unit vector z-axis
nz : Direction vec. by normal and z-axis
� z : Angle between normal and z-axis
R � : Rot. matrix by normals and z-axis
T p: Poses wrt object for P CDp

T e: EE poses wrt robot’s base
Input : Filtered Point cloud profile P CDp

Output : EE Targets T e wrt to robot’s base
STEP 1: Generate Rotation matrix
uz [0; 0; 1]
foreach P CDp do

np normalize(P CDp:normals)
nz cross(np, uz)/normalize(cross(np, uz))
� z -(acos(dot(np, uz)))
R � RotMAxisAngle(� znz)
T p CalcTransforms(R � ,P CDp:points)

STEP 2: Filter world coordinates
T p FilterThreshold(T p)
T p FilterCloseCoords(T p)
STEP 3: Reorder the coordinates
T p Reverse(T p)
STEP 4: Generate EE targets by transformations
T e GenerateEETargets(T p)

sample frames. Subsequently, the optimal frame is identified
through a majority vote mechanism, mitigating outliers that
deviate from the majority in terms of point count (step 4
in Alg. 1). Background points are eliminated using hidden
point removal [23]. Afterward, the point cloud undergoes
downsampling to a specified resolution. The importance of
downsampling becomes particularly evident when manag-
ing dense point clouds, as they can strain computational
resources, potentially obscure objects of interest [19], [23]
and are unnecessary for our specific application.

C. Normal estimation

The points within the point cloud contain data about the
object’s surface in a three-dimensional space relative to the
depth camera. In essence, each point can be transformed to
obtain its precise position in the world. However, achieving

high-quality data for visual inspection necessitates the cam-
era being positioned orthogonal to the points. These normals
are estimated using covariance analysis of Eigen vectors of
samples within the local neighborhood of points, a technique
described in [24] and implemented through Open3D [23].

D. Clustering

Due to the distribution characteristics of a captured point
cloud, it is essential to cluster and delineate distinct groups of
points within the point cloud and isolate an object of interest.
It becomes more relevant when there are multiple objects
within the Field of View (FoV) of the camera, such as the
ground, other objects, sections of robot, etc. Consequently,
the DBSCAN clustering algorithm [22] is utilized, which
provides the user with a GUI populated with various clusters
of which the most useful ones are to be selected. Based
on the cluster(s) selected, an object point cloud pro�le is
generated. The users have the �exibility to select the object
pro�le in various patterns and sequences available through
the interface including single speci�c pro�les and multi-path
pro�les generation, which is useful in generating multiple
pro�les for a better and complete coverage of the object.
This pro�le is then passed on to Alg. 2 to generate targets
and stored inPCDp.

E. Target generation

The process of generating targets is de�ned by Alg. 2
and takes the object pro�lePCDp as input. While the
points within the point cloud pro�le can be used to deter-
mine the position of each point, achieving the manipulator's
desired pose also requires generating accurate orientations.
To achieve this, the algorithm iterates over the points in
the pro�le and computes a rotation matrixR � (step 1
of Alg. 2) by calculating the axis-angle representation for
each point. This rotation matrix is then used to calculate
the correct transformations for the object pro�lePCDp in
world coordinatesT p. Two separate �lters are applied to
the coordinates (step 2 in Alg. 2) to �lter out targets that
are beyond user-de�ned thresholds and anomalous in nature.
The �rst �lter removes all coordinates that are too close to
the ground or other surfaces and may pose danger to the
movement of the end-effector. The second �lter calculates the
Euclidean distance between each point and if the distance is
less than the 2 times the downsample resolution of the point
cloud, the coordinate is �ltered out. The list of generated
targetsT p is arranged in the correct sequence (step 3 in
Alg. 2), and precise transformations are applied to derive
the end-effector's world coordinatesT e for each of these
targets (step 4 in Alg. 2).

IV. RESULTS

A. Integration

For robot and perception hardware, we utilize the Franka
Emika collaborative robotand an Intel Realsense D435 cam-
era, mounted on the end-effector of the robot for eye-in-hand
perception. All developments are integrated with ROSwithin
Jupyternotebooks using Python. Additionally, Open3D [23]

TABLE I: Coverage and planning results (mean of �ve trials)
with 12 pro�les ands = 1 on three baseline models.

Coverage

[%]

Time

[ms]

Object

pro�le points

Distance [m]

[pro�le � 0.01]

Car 93.3 596 ± 10.3 384 3.84

Sphere 77.3 991 ± 9.5 489 4.89

Shell 98.6 1690 ± 25.9 693 6.93

is used for 3D data processing of camera images and MoveIt!
for the robot motion planning. The OMPL [25] motion
planner provided by MoveIt! was selected as a default
planner. The MoveIt python API provides the interface to
the task space controller that is primarily used for the robot
manipulator's motion. The waypoints are published to the
MoveIt! API to make the robot move and record the images
and video of the object. Computations are done on a Ubuntu
PC with Nvidia GTX 1060 GPU, running ROS Noetic. The
Gazebo simulation tool serves as the platform for creating a
simulated environment in which the virtual objects are placed
and the experiment is conducted. The primary algorithms,
along with the graphical user interface (GUI), is implemented
using the Python programming language and runs within
a Jupyter notebook. For testing, complex shaped objects
with different curvatures and size were selected in both
simulated and real environments. The objects larger than the
robot manipulator were tested in the simulator. These include
simulated models of car, tunnel, satellite, submarine, sphere
and wall. Smaller models were less than half a meter in
length and included physical objects such as bench, aerofoil,
3D printed model of a suction roll, textured metal sheets,
inclined planes, etc.

B. Point cloud sampling results

To evaluate the effectiveness of the point cloud sam-
pling technique described in Section III-A, we performed
the following experiments. We positioned a real inclined
metal sheet within the �eld of view of the depth camera.
Adjacent to the metal sheet, we placed a strobe light oriented
partially toward the camera. Throughout the experiments,
the strobe light operated at a frequency of 3Hz with a 50
percent duty cycle. This setup simulated the varying ambient
light intensity conditions affecting both the camera and the
surrounding objects. The experiments were divided into three
scenarios with varying point cloud sampless 2 f 1; 5; 10g,
each of which was repeated �ve times to enhance precision.
The selected values here are only to evaluate the ef�cacy of
this algorithm. In actual practise the number of samples will
be dependent on ambient noise level and may differ from
our test sample.

The resulting point cloud with a single samples = 1
exhibited noticeable gaps in data across the surface and
produced sub-optimal targets that did not cover the entire
length of the object (see Fig. 3a). In contrast, the combined
point cloud was more reliable with sampling set tos = 5
and s = 10, as shown in Fig. 3b and Fig. 3c respectively.

TABLE II: Point cloud sampling results (mean of �ve trials)
for varying number of sampless.

Number of

points

Sampling

time [ms]

Object pro�le

points

Final targets

generated

s = 1 715 480 25 8

s = 5 795 1350 28 11

s = 10 791 2030 28 10

Ultimately, the results, shown in Table II, indicate that a
higher number of samples leads to a better distribution of
points and a higher density within the point cloud, which
improved the total number of �nal targets generated. A
compromise, however, is the increase in sampling time, with
more samples included in a point cloud. Determining the
ideal number of samples is dependent on current ambient
conditions. There can be cases where the �lter functions
better with ten or more samples.

C. Point cloud slicing results

Fig. 4 demonstrates the results obtained after applying
point cloud processing to a point cloud captured from a
simulated object. In Fig. 4a, the raw point cloud is depicted,
containing both the primary object of interest and extraneous
segments. After �ltering and downsizing the point cloud (step
5 in Alg. 1), Fig. 4b is obtained and, following, normal
estimation results are depicted in Fig. 4c. The generated
object pro�le (step 6 in Alg. 1) is depicted in Fig. 4d, from
which the �nal targets are generated.

D. Path planning results

Fig. 5a-c depict the inspection paths and/or targets gen-
erated for a variety of simulated objects, including a down-
scaled 3D model of a car with 28 targets, an aerofoil with
15 targets and a substantial 3D model of a tunnel with 106
targets. Fig. 5d-g depict the inspection paths and/or targets
generated using real-world objects, including a bench with
12 targets, an inclined metal sheet with 9 targets, an aerofoil
with 13 targets and a model of suction roll with 4 targets.

Targets are generated based on certain physical constraints
and can be adapted according to user preferences (see Step 2
in Alg. 2), including the distance of targets to the surface and
the spacing in between targets, which, in our experiments,
was set to 0.3 meters and 0.02 meters, respectively.

E. Multi-path planning results

The previous results demonstrated the generation of paths
with a single direction, i.e., along a single curvature of the
object. Our approach also enables to select the direction for
generating the object pro�le in accordance with a user's
preferences. Users can select a speci�c segment to serve
as the object pro�le or de�ne the number of pro�les to
completely cover the object's surface. This effectively en-
ables users to create numerous sequences of targets, offering
comprehensive coverage of an object's surface, resulting in
the generation of multi-path plans, as illustrated in Fig. 6.

F. Quantitative analysis against baseline models

To evaluate the effectiveness of the proposed model, an
experimental setup is established in a simulated environment.
The experiment aims to compare the proposed model with
three baseline models considered as the ground truth (refer
to Fig. 7c). These baseline models were generated from 3D
STL �les, each containing 5 million points converted into
point clouds. For evaluation purposes, the point cloud is
voxelized to a standard resolution of 0.01 meters, consistent
with our proposed method. The ground truth models consist
of 4185 voxels for the car, 7219 voxels for the sphere, and
12724 voxels for the shell, representing variations in size and
complexity. The camera mounted on the robot's end-effector
maintains a distance of 0.25 meters from the surface during
scanning. The surface of the baseline model is scanned, and
potential pro�les are generated. The program is executed on
multiple pro�les, and results on surface coverage, planning
time, and path length are recorded. Fig. 7a illustrates the
relationship between the number of unknown voxels in the
region and the number of pro�les, while Fig. 7b displays
the percentage coverage as the number of pro�les increases
for the baseline models. These results are also depicted in
Fig. 7c, comparing models with two and twelve pro�les to
the baseline models. Additionally, Table I presents results
regarding coverage percentage, distance calculated using the
model, and planning time, which includes sampling, �ltering,
clustering, pro�le generation, and target generation times.

V. D ISCUSSION

As a general result, the path planning approach can be
utilized for the visual inspection and 3D modelling of objects
without any prior needed information such as object models,
training data or human speci�ed trajectories. Depending on
the sampling rate of the point cloud, the approach can
generate an inspection path in relatively short time with
standard perception and computational hardware (see Section
IV-A). In addition, our developments are robot-agnostic and
are provided open-source to research community.

A. Simulated vs. real experiments

Experiments included both simulated and real-world en-
vironments. In simulation, path plans demonstrated better
performance due to the absence of physical factors like noise
and ambient conditions. In contrast, conducting experiments
in the real world proved to be more challenging due to
these physical factors. After evaluating the results from both
settings, additional �lters (step 2 in Alg. 2) were incorporated
to enhance the resilience against noise and environmen-
tal variations. The integration of these �lters resulted in
improved outcomes in real-world scenarios, albeit at the
expense of increased algorithm complexity and execution
time. Nevertheless, the approach offers users the �exibility
to con�gure and optimize the �lters to suit the speci�c
characteristics of the object under inspection.

The process of generating targets is in�uenced by three
distinct parameters employed at various program stages. As
the targets are derived from the processed point cloud, their

	Introduction
	Related Work
	Methods
	Point cloud acquisition and sampling
	Point cloud processing
	Normal estimation
	Clustering
	Target generation

	Results
	Integration
	Point cloud sampling results
	Point cloud slicing results
	Path planning results
	Multi-path planning results
	Quantitative analysis against baseline models

	Discussion
	Simulated vs. real experiments
	Object profile coverage
	Comparison to related work
	Limitations

	CONCLUSION
	References

