
6D Assembly Pose Estimation by Point Cloud Registration for Robotic
Manipulation

Kulunu Samarawickrama1, Gaurang Sharma1, Alexandre Angleraud1 and Roel Pieters1

Abstract— The demands on robotic manipulation skills to
perform challenging tasks have drastically increased in recent
times. To perform these tasks with dexterity, robots require
perception tools to understand the scene and extract useful
information that transforms to robot control inputs. To this end,
recent research has introduced various object pose estimation
and grasp pose detection methods that yield precise results. As-
sembly pose estimation is a secondary yet highly desirable skill
in robotic assembling as it requires more detailed information
on object placement as compared to bin picking and pick-and-
place tasks. However, it has been often overlooked in research
due to the complexity of integration in an agile framework.
To address this issue, we propose an assembly pose estimation
method with RGB-D input and 3D CAD models of the associ-
ated objects. The framework consists of semantic segmentation
of the scene and registering point clouds of local surfaces against
target point clouds derived from CAD models to estimate 6D
poses. We show that our method can deliver sufficient accuracy
for assembling object assemblies using evaluation metrics and
demonstrations. The source code and dataset for the work can
be found at: https://github.com/KulunuOS/6DAPose

I. Introduction
The ability to grasp an object successfully is a highly

desired skill of robotic manipulators in applications such
as industrial manufacturing, mining, space explorations, etc.
The advancement of modern robot manipulators with mul-
tiple degrees of freedom, precise sensing and control ca-
pabilities highly encourages the development of the robot’s
cognition skills in order to execute dexterous tasks in above
fields either autonomously or with human collaboration.
Several research publications have demonstrated that vision-
based deep learning and reinforcement learning can yield
successful results in endowing cognitive skills such as object
grasping [1], [2]. In that regard, the state of the art on robotic
manipulation is heavily focused on object pose estimation
and grasp pose detection [3], [4]. Pose estimation via point
cloud based deep learning methods such as PVN3D [5] and
FFB6D [6] have shown great accuracy in 6D pose estimation
with fast inference times, which are ideal characteristics for
robotic grasping applications. However, object pose alone is
not sufficient to perform a successful grasp. The robot end-
effector should reach a pose that produces a fail-proof grasp-
ing of the object, which is a different definition compared
to the object pose. Grasp pose for an object can be sampled
either analytically or using human expertise. Some analytical
methods [7], [8], [9] have proposed deriving grasp pose
by analyzing object model and depth information acquired
from a sensor. Although these methods can produce feasible

1Automation Technology and Mechanical Engineering, Tampere Univer-
sity, 33720, Tampere, Finland, firstname.surname@tuni.fi

Fig. 1: Overview of assembly pose estimation pipeline de-
picting for each step the base assembly point cloud in red and
the estimated assembly point cloud (object pose) in green.

grasp poses for a single object, they fail when objects are in
clutter. GraspNet [10] introduced a model-agnostic method to
directly produce grasp candidates on any observed unknown
partial point cloud. This method produces multiple grasp
candidates and prunes unfeasible candidates in an end-to-
end pipeline which makes it highly suitable for bin picking,
sorting and inspection tasks. High computational resource
consumption of these methods are, however, an undesirable
feature for robotic applications.

However, there exists a disparity in research for precise
robotic assembly, as the majority of the existing studies on
robotic assembly focus only on initial object pose estimation.
Robotic assembly requires the additional estimation of object
placement pose (see Fig. 1). We use the synonymous term
’assembly pose’ henceforth in this paper. Assembly pose can
be described as the pose of the end-effector that results in
the successful placement of a grasped object that satisfies
assembly constraints. The primary constraint that defines
accuracy of assembly is the relative pose between objects
of the assembly. Other assembly constraints vary depending
on the nature of the task and the task environment, such as
specific placement direction or motion, but is not considered
in this work.

https://github.com/KulunuOS/6DAPose

To address the issue of assembly pose estimation, we
propose an approach that can be integrated into a robotic
assembly framework without compromising the agility. As
the final step of a robotic manipulation framework, an
efficient method should well utilize the inferred information
from object pose estimation and grasp pose detection steps,
offer high accuracy, and not compromise the computational
load and inference times. First, the proposed method includes
a semantic segmentation module that estimates a per-pixel
object label. Second, the segmentation results and RGB-D
images are utilized to perform point cloud registration of a
pair of source and target point clouds. As an object assembly
may consist of several assembly steps, assembly poses are
estimated as a sequential process, but separately for each
individual assembly step. Pose estimation does therefore not
rely on previous steps, besides the assumption of a correct
previous assembly step, represented in the CAD model.
The proposed method can be integrated with a framework
consisting of existing pose estimation and grasp detection
methods without additional model training.

The contributions of this work are as follow:
1) A novel approach for extending state of the art pose

estimation datasets for assembly pose estimation
2) An effective method to generate source point clouds

using CAD models
3) An iterative pipeline to estimate assembly poses for

object assemblies with multiple objects
4) An evaluation of efficiency of point cloud registration

as a method of assembly pose estimation
The remainder of this paper is organized as follows. In

Section II we provide an overview of related work. Section III
presents our proposed method, which is evaluated in Section
IV and discussed in Section V. Section VI concludes the
work.

II. Related Work
An early attempt at combining image segmentation and

point cloud registration for pose estimation and robotic grasp-
ing featured in the Amazon bin picking challenge in 2016
[11]. Zeng et al. takes an RGB-D input of the bin and outputs
6D object poses. The estimated object poses are converted
to grasp poses to be grasped by a parallel gripper. They
implemented a Fully connected Neural Network with VGG
architecture for object segmentation in their method with
a large dataset of around 130,000 images. Despite the fact
that segmentation networks have vastly improved over time
since 2016, their results show that the heavy occlusive and
cluttered nature of bin picking tasks negatively affected point
cloud registration, thereby increasing the pose estimation
error. Besides, they constrain the source point cloud by
orienting it towards the optical axis of the camera in the pose
initializing step. The resulting ambiguity of rotation around
the axis could result in an initial error that propagates through
ICP refinement. Some later research proposed a solution
to the problem by introducing model libraries containing
samples of partial point clouds as seen from different view
points for each unique object category.

SegICP [12] proposed another per-pixel instance segmen-
tation module and an ICP registration method for the same
purpose. They adopt Segnet [13], a convolutional neural
network, for the semantic segmentation step in their pipeline.
In the point cloud registration step they align a source point
cloud against a target point cloud retrieved from a model
library. Ultimately, they perform an exhaustive search for the
best pose estimation by comparing the ICP result against all
samples in the model library for each object category.

Some further studies have been done using SegICP as
a base concept. Xu et al. [14] proposed a pose estimation
pipeline with a custom segmentation network (FCN-artous-
2s) and modified ICP algorithm for a grasp manipulation
task. The modified ICP algorithm addresses lack of one-
to-one correspondence points in partial point clouds of the
target and source. Wang et al. [15] proposed a similar
pose estimation method in their pipeline for a robotic spray
painting application. They implement an additional network
to estimate the initial orientation, which facilitates retrieval of
the most accurate point cloud sample from the model library.
However, the additional iterations and inference steps in these
methods results in prolonged total inference times.

In contrast to above work, we perform real-time rendering
of the target point cloud in the partial observable state
without sampling views and generating model libraries. This
eliminates naive assumptions in both pose initialization and
exhaustive, repetitive ICP calculations. The evaluation metric
used to measure registration accuracy directly affects the
pose estimation accuracy. Zeng et al. [11] do not evaluate
the registration result and SegICP uses a unique point corre-
spondence matching criteria for evaluation of the registration
result. We use two different evaluation metrics, namely
inlier RMSE (Root Mean Square error) and a fitness score
to analyze registration accuracy and reflect its propagation
towards pose estimation accuracy in our work.

III. Proposed Method
We approach the object assembling task as an iterative

process of several sub-assembling steps as described in Fig.
1. For the proposed method we assume that the order of
assembling and pose of each object with respect to the base
object are known. The base object can be defined as the
completed assembly of objects at each step as described
in Fig. 2. More complex and larger object assemblies can
be divided into several sub-assemblies and corresponding
base objects. Therefore it can be assumed that all objects
assemblies can be assembled in above described manner.

An assembly pose estimation procedure that can be inte-
grated to a generic vision based robotic assembling frame-
work is presented in Fig. 2. The first step of the framework
is to understand the scene and locate the objects. The second
step is to produce a fail-proof grasp for each object. These
two tasks can be achieved by object pose estimation and
grasp pose estimation algorithms. Our proposed method
applies in the third step where a successfully grasped object
is assembled to satisfy assembly constrains. The assembly
pose estimation algorithm is described in Alg. 1.

Fig. 2: Proposed framework for 6D assembly pose estimation

Algorithm 1: Assembly pose estimation
Parameters:
Input : 𝐼𝑅𝐺𝐵, 𝐼𝐷 , 𝑀𝑠=1,2,3..𝑛
Output : 𝑇𝑎𝑤
Functions : SEG() ; Instance Semantic Segmentation

PROJ3D() ; 3D projection of 𝐼𝐷
TFORM() ; 𝑆𝐸 (3) Transformation
RCAST() ; Raycasting in simulation
PCDREG() ; Pointcloud Registration

foreach Assembly step do
𝐼𝑆𝐸𝐺 ← SEG(𝐼𝑅𝐺𝐵)
𝑃𝑡 ← PROJ3D(𝐼𝑆𝐸𝐺 , 𝐼𝐷)
𝑃𝑠 ← RCAST(TFORM(𝑀𝑠 ,𝑃𝑡))
𝑇𝑤
𝑏
← PCDREG(𝑃𝑡 , 𝑃𝑠)

𝑇𝑎𝑤 = 𝑇𝑎
𝑏
𝑇𝑏𝑤

end

A. Object and Grasp Pose Detection
Object pose locates the object in robot coordinate frame.

Grasp pose defines the pose of robot’s end effector while
producing a fail-proof grasp of the object. A successful grasp
is a prerequisite for a successful assembly and depends on both
above factors. However, object grasping is not the main focus
of our work. The pipeline provides the opportunity to utilize a
grasp pose detection method of preference. A module that first
estimates the object pose and then derives grasp poses relative
to object pose is more suitable for the task. Alternatively, point
cloud registration result can be used to detect object pose as
well when relative grasp pose information is available as in
our demonstration.

B. Assembly Pose Estimation
For a robotic assembling task, assembly pose estimation can

be interpreted as the estimation of rotation and translation of

the assembly object frame with respect to the robot base frame.
An assembly pose must satisfy certain assembly constraints
to create a precise assembly which varies depending on the
task. Often in industrial object assemblies, the assembly pose
is constrained by the relative pose of assembly object with
respect to a base object of an assembly or an assembly surface.

In Alg. 1, each base object is represented by a source
mesh 𝑀𝑠 . A prior knowledge 𝑇𝑎

𝑏
defines the relative pose

from base object 𝑏 to assembly object 𝑎 by the homogeneous
transformation matrix 𝑇𝑎

𝑏
. The output of the algorithm is the

homogeneous transformation matrix 𝑇𝑎𝑤 which estimates the
relative assembly pose of assembly object to world frame 𝑤.

Instance semantic segmentation: The first function in
algorithm 𝑆𝐸𝐺 (), an instance semantic segmentation module
trained on RGB images 𝐼𝑅𝐺𝐵 estimates per-pixel assembly
object label for a given scene. A segmentation mask of the
base object 𝐼𝑆𝐸𝐺 in the assembly scene can be extracted from
the segmentation result.

Target point cloud projection: In the second function
𝑃𝑅𝑂𝐽3𝐷 (), we project a target point cloud of base object
𝑃𝑡 using 𝐼𝑆𝐸𝐺 and depth image 𝐼𝐷 of the scene.

Source point cloud projection: A source point cloud 𝑃𝑠
with enough correspondences and an initial transformation
closer to the 𝑃𝑡 is an essential for successful point cloud
registration. To generate a 𝑃𝑠 with above qualities, we
transform the relevant 𝑀𝑠 to the center of 𝑃𝑡 in 𝑇𝐹𝑂𝑅𝑀 ()
and implement a ray casting function 𝑅𝐶𝐴𝑆𝑇 () in simulation.
The 𝑅𝐶𝐴𝑆𝑇 () function simulates a pinhole camera looking at
center of 𝑀𝑠 with the intrinsic and extrinsic parameters of the
camera used to obtain 𝐼𝑅𝐺𝐵 and 𝐼𝐷 in real-time. This function
generates a 𝑃𝑠 that has a similar partial view of the target and
sufficient correspondences to 𝑃𝑡 . This procedure eliminates
the requirement to have a separate database of point clouds
for registration compared to other related work [12], [13]. we
record the initial transformation of 𝑃𝑠 as 𝑇 𝑠𝑤 .

Point cloud registration: In the fourth step, we implement
a point cloud registration pipeline to align 𝑃𝑠 against 𝑃𝑡 . We
estimate an initial transformation using a global registration
based on Random Sample Consensus (RANSAC). RANSAC
detects corresponding points in 𝑃𝑠 and 𝑃𝑡 using a nearest
neighbour algorithm with Fast Point Feature Histograms
(FPFH) [16] descriptors as geometrical feature inputs. Further-
more, the algorithm runs for 100,000 iterations while pruning
correspondences based on edge length 𝐸 between any pair of
corresponding points in 𝑃𝑠 and 𝑃𝑡 :

| |𝐸𝑠 | | > 0.09| |𝐸𝑡 | |,

| |𝐸𝑡 | | > 0.09| |𝐸𝑠 | |,

and a point cloud distance threshold of 0.036. These values
were figured out experimentally for each assembly.

A local registration based on point-to-plane ICP [17] further
refines the global registration result. The refinement is based
on the convergence of an objective function 𝐿 (𝑇):

𝐿 (𝑇) =
∑︁

𝑝∈𝑃𝑠 ,𝑞∈𝑃𝑡
((𝑝 − 𝑇𝑞) · (𝑛𝑝))2, (1)

where 𝑝 and 𝑞 are points in 𝑃𝑠 and 𝑃𝑡 respectively, 𝑛𝑝 is an
estimate of normal of point 𝑝. The function converges when
the point clouds are aligned. The resulting 6D transformation
from 𝑃𝑠 to 𝑃𝑡 in our context is equal to 𝑇𝑏𝑠 the estimated 6D
transformation of base object relative to 𝑃𝑠 .

Local Pose transformation: Knowing the transformation
of 𝑃𝑠 as 𝑇 𝑠𝑤 , the estimated transformation of base object with
respect to world frame 𝑇𝑏𝑤 can be derived. In the final step,
local assembly poses 𝑇𝑎

𝑏
can be transferred to estimate the 6D

assembly pose of each object with respect to robot base 𝑇𝑎𝑤 ,
as the output of algorithm:

𝑇𝑏𝑤 = 𝑇𝑏𝑠 𝑇
𝑠
𝑤 , (2)

𝑇𝑎𝑤 = 𝑇𝑎𝑏 𝑇
𝑏
𝑤 . (3)

IV. Evaluation
A. Implementation

It is common to demonstrate the performance of pose esti-
mation algorithms using existing standard datasets. However,
there are no available standard datasets specifically designed
for the purpose of assembly pose estimation.We therefore
evaluate our method on two different object assemblies using
the 3D mesh files of the assembly objects obtained from
Thingiverse1,2. We generate two synthetic datasets in a format
specific for assembly pose estimation in gazebo simulation
environment. Table I and II describe the helical and planetary
gear assembly sets, with three assembly steps four assembly
steps, respectively For ease of integration the proposed format
is designed as an extension to the existing BOP format [18] for
object detection and 6D pose estimation. The data generation
algorithm is presented in Alg. 2 and the source code and links
to download the datasets can be found in the git repository:
https://github.com/KulunuOS/6DAPose.

1https://www.thingiverse.com/thing:3936460
2https://www.thingiverse.com/thing:8460

Algorithm 2: Assembly dataset generation
Parameters:

𝜙: yaw angle of the camera
\: pitch angle of the camera
𝑠: scale of the camera

Input : CAD models of object assembly
Output : 𝐼𝑅𝐺𝐵, 𝐼𝐷; color and depth images

𝐼𝑆𝐸𝐺; segmentation maps,
𝑃𝑜𝑏 𝑗 ; ground truth object poses,
𝑃𝑐𝑎𝑚; ground truth camera pose,
𝐾𝑐𝑎𝑚; ground truth camera parameters

Define and record assembly constrains
foreach Assembly step do

foreach 𝜙, \, 𝑠 do
Record {𝐼𝑅𝐺𝐵, 𝐼𝐷 , 𝐼𝑠 , 𝑃𝑜𝑏 𝑗 , 𝑃𝑐𝑎𝑚, 𝐾𝑐𝑎𝑚}

end
end

For our implementation we only consider primary assembly
constraints, defined by the relative transformation between
the base object and the assembly object 𝑇𝑏𝑎 . This has to
be individually analyzed with human expertise for distinct
assemblies. The helical gear and planetary gear assemblies
are constrained by three and four sets of relative poses,
respectively, corresponding to their assembly steps (see Fig. 4
and 6). In the process, assembling order of objects, the base
object for each assembling step and object information such as
mesh model diameter and corners have to be analyzed. Data is
recorded for each assembly step starting from the disassembled
configuration. For each assembly step, a simulated RGB-D
camera captures the data by following hemisphere sampling
procedure [19] parameterised by yaw angle 𝜙, pitch \ and
scale 𝑠. For the implementation, we simulate a Intel Realsense
camera model with default camera parameters and capture 431
instances for each assembly step in both object assemblies.
The major difference between our dataset and standard object
pose estimation datasets is the inclusion of assembly steps
as individual sub datasets. Furthermore, its important to note
that contrasting to pose estimation datasets, the ground truth
assembly pose for 𝑖𝑡ℎ assembly step is obtained from 𝑖 + 1𝑡ℎ
assembly step. We share tools from Open3D [20] library to
implement point cloud processing functions in our work.

B. Metrics
The pose estimation accuracy is directly affected by the point

cloud alignment produced by the ICP registration process.
Therefore for each of 431 instances in each assembly step we
calculate the Fitness and root mean square error of inliers;
𝑙𝑟𝑚𝑠𝑒 produced by point cloud registration. Fitness refers to
the ratio between number of total inliers 𝑙 and total points 𝑁 in
𝑃𝑡 . 𝑙𝑟𝑚𝑠𝑒 is a function that calculates the error between inliers
in source 𝑙𝑠 and target 𝑙𝑡 . For an ideal point cloud alignment
Fitness should be closer to 1 and 𝑙𝑟𝑚𝑠𝑒 must be closer to 0:

Fitness =
𝑙

𝑁
, (4)

https://github.com/KulunuOS/6DAPose
https://www.thingiverse.com/thing:3936460
https://www.thingiverse.com/thing:8460

TABLE I: Helical gear assembly dataset, with four parts and three assembly steps.

Mesh model

Mesh name Bottom casing Left gear Right gear Top casing Complete assembly
Diameter [cm] 3.81 2.78 2.78 3.82

TABLE II: Planetary gear assembly dataset, with five major parts and four assembly steps.

Mesh model

Mesh name Nema17 Motor Sun gear Housing Carrier Cover Complete assembly
Diameter [cm] 7.67 2.70 6.17 3.56 5.38

𝑙𝑟𝑚𝑠𝑒 =

√√√
1
𝑙

𝑙∑︁
𝑗=1

𝑙s 𝑗 − 𝑙t 𝑗 2
. (5)

The symmetric nature of objects deprecates rotation and
translation error as an evaluation metric for pose accuracy.
Hence, we use Maximum Symmetry-aware Surface Distance
MSSD [18] and Average Distance of model points for objects
with Indistinguishable views ADI [21] as pose error functions
to evaluate the accuracy:

𝑀𝑆𝑆𝐷 = min
𝑦∈𝑌

max
𝑥∈𝑋

𝑇𝑥 − 𝑇𝑦𝑥2 , (6)

𝐴𝐷𝐼 =
1
𝐾

𝐾∑︁
𝑘=1

𝑀

min
𝑚=1
∥𝑈𝑘 −𝑉𝑚∥ . (7)

ADI calculates average of distances to the nearest neighbors
from vertices in the ground-truth pose to vertices in the
estimated pose as described in Eqn. 7. 𝑈𝑘 and 𝑉𝑚 are 3D
vectors describing the respective vertices where 𝐾 and 𝑀

are total number of sampled vertices. In contrast MSSD is
less dependent on sampling vertices and calculates maximum
distance between surfaces as in Eqn. 7 where 𝑌 is a set of
global symmetry transformations, 𝑋 is a set of mesh vertices,
𝑇 and 𝑇 are ground truth and estimated 6D poses respectively.
Hence MSSD is more suitable metric for robotic manipulation
tasks. The errors are calculated individually for each assembly
step and does not represent a cumulative error propagation.
The mean values and standard deviation for each metric is
calculated for each assembly step in the whole dataset. The
calculations were run in a standard computing machine with an
AMD Ryzen 7 4800h CPU with cores without multi-threading.
The mean time per iteration is calculated in seconds. The
evaluation results of the method for the two assembly datasets
are summarized in the Tables III and IV.

C. Results
We present evaluation results for two simulated gear as-

sembly datasets illustrated in Tables III and IV. The step-wise
propagation of point cloud registration of base objects between
target (red) and source (blue) point clouds are illustrated in
Fig. 3 and 5, demonstrating well-matching overlap in all cases.
The estimated (green) and ground truth (red) 6D assembly
poses for each assembly steps are displayed using bounding
box representation in Fig. 4 and 6. A statistical analysis of all
estimated assembly 6D poses are summarized in Tables III and
IV. The analysis shows that when it is possible to achieve good
Fitness values closer to 1 with 𝑙𝑟𝑚𝑠𝑒 closer to 0, the assembly
poses can be estimated with a high accuracy according to the
pose metrics. Values closer to 0 in MSSD explains that surfaces
align well when an assembly mesh is rendered for an estimated
pose, as compared to the ground truth pose. Similarly in ADI,
values closer to 0 suggests that distances between vertices of
an assembly mesh in estimated pose are closer to that of the
ground truth result.

One exception is the assembly step 4 for the planetary
gear dataset, which has a comparatively bigger pose error
even with consistent Fitness values. The reason for this is the
occlusions forced on assembly step 4, which is located inside
assembly object 3. An absence of important assembly surfaces
introduces a pose estimation error even when base object point
clouds fit well.

A second observation is that the time for pose estimation
increases with the increase of the assembly steps. This is due to
an increase in the number of points in the source point cloud,
hence increasing the computational load of the point cloud
registration approach. In our cases, we sample 30,000 points
for each assembly object in the dataset.

To observe the sim-to-real gap, we also evaluated our
method on an industrial use case, for the estimation of eight
assembly poses of rocker arms on a Diesel engine (see Fig.
7). The base object for this application is a region of interest
(ROI) on the assembly surface. Henceforth we use the term

(a) Base object 1 (b) Base object 2 (c) Base object 3

Fig. 3: Point cloud registration of base objects for each assembly step: bottom casing (a), bottom casing and left gear (b), bottom
casing, left and right gear (c). Target (red) and source (blue) point clouds are obtained from camera and CAD, respectively.

(a) Assembly step 1 (b) Assembly step 2 (c) Assembly step 3

Fig. 4: Estimated (green bounding box) and ground truth (red bounding box) 6D assembly poses for assembly steps 1-3 in helical
gear assembly: left gear to bottom casing (a), right gear to bottom casing (b), top casing to complete assembly (c).

TABLE III: Evaluation metrics for 6D assembly pose estimation on the helical gear dataset

Assembly step Fitness 𝑙𝑟𝑚𝑠𝑒 ADI MSSD time [sec]

mean stdv mean stdv mean stdv mean stdv mean
1 0.995184 0.062205 0.000429 0.000097 0.000604 0.004411 0.001075 0.005385 0.505338
2 0.999543 0.000571 0.000436 0.000073 0.000374 0.000036 0.000741 0.000156 0.562895
3 0.999333 0.000693 0.000444 0.000085 0.000510 0.000057 0.000778 0.000425 0.646653

base ROI to describe it. A semantic segmentation module was
trained on Detectron2 [22] Mask-RCNN architecture to detect
base ROIs as shown in Fig. 7b. The module was trained on
40 captured images and manually labelled annotations. The
estimated base ROI and bounding box for estimated pose
are illustrated in similar colors. The results emphasize that
the method can produce feasible assembly poses for different
regions of the surface while having less consistency compared
to simulated data due to occlusions from the engine surface.
Unlike in a simulated environment, ground truth information
is unavailable for real life applications. Therefore, the accuracy
of the estimated assembly pose has to be visually inspected.
Due to absence of precise CAD models of the engine assembly
we use an approximated CAD model to generate base ROI as
explained in Fig. 7a. This adversely affects the point cloud
registration by reducing point correspondences. However, the
method generates feasible assembly poses when there are
sufficient correspondences. The number of correspondences
can be improved by changing the angle of the camera to
capture as many points on the ROI as possible. This can
be enabled by changing the viewing angle of the camera as

placed on the end-effector of the robot. As visible in Fig. 7b,
the bounding boxes align well on ROI surfaces with more
correspondences (red, blue, yellow) and weaker alignments
on incomplete ROI segments with less correspondences (cyan,
purple). The observations suggest that surface regions located
at the center and corners of the field of view tend to capture
less ROI surfaces compared to other regions. The estimated
poses are sufficient for assembling, considering the magnetic
force between rocker arm and surface in the application.

V. Discussion
The proposed framework is capable of estimating a 6D

assembly pose for an object assembly without initializing
source point clouds at a predefined constraint, unlike Zeng et
al. [11] or other work that require creating a model library [12].
Furthermore, calculating two separate metrics for point cloud
registration step and pose estimation provides a feedback on
the quality of captured depth information, pose initialization
and point cloud registration parameters. Unlike work that only
estimates object poses [14], [15], which is more suited for
bin picking and sorting tasks, the proposed framework can put
together an object assembly while maintaining quality control.

(a) Base object 1 (b) Base object 2 (c) Base object 3 (d) Base object 4

Fig. 5: Point cloud registration of base objects for each assembly step: motor (a), motor and sun gear (b), motor, sun gear and
housing (c), motor, sun gear, housing and cover (d). Target (red) and source (blue) point clouds are obtained from camera and
CAD, respectively.

(a) Assembly step 1 (b) Assembly step 2 (c) Assembly step 3 (d) Assembly step 4

Fig. 6: Estimated (green bounding box) and ground truth (red bounding box) 6D assembly poses for assembly steps 1-4 in
planetary gear assembly: sun gear to motor (a), housing to motor (b), carrier to housing (c), cover to complete assembly (d).

TABLE IV: Evaluation metrics for 6D assembly pose estimation on the planetary gear dataset

Assembly step Fitness 𝑙𝑟𝑚𝑠𝑒 ADI MSSD time [sec]

mean stdv mean stdv mean stdv mean stdv mean
1 0.999880 0.000417 0.000548 0.000109 0.000528 0.000045 0.001425 0.000087 1.329737
2 0.990592 0.096101 0.000618 0.000122 0.002384 0.019576 0.003604 0.023681 1.359196
3 0.999851 0.000489 0.000534 0.000146 0.000427 0.000619 0.000796 0.000964 2.369656
4 0.997401 0.048216 0.001335 0.000199 0.003576 0.008271 0.006678 0.009545 2.396376

Although the proposed method estimates assembly poses
accurately for object assemblies with few objects, the compu-
tational load increases for complex assemblies with multiple
objects, due to large number of points accumulated in the
registration step. Similarly, the absence of precise CAD models
decreases the number of correspondences in derived source
point clouds which adversely affects point cloud registration.
Furthermore, as a purely geometrical approach, the method
is not robust to occlusions and obstructions in the scene.
Occlusions and obstructions eliminate points, which represent
important features and affect correct point cloud alignments.
An example is when assembling or placing an object internally
on a place surrounded by walls or surfaces such as plumbing,
box packaging etc. In such cases, although a point cloud reg-
istration achieves a good fitness score, the resulting assembly
pose may be less accurate.

As a future improvement of this work it would be appropriate
to have a learning-based pose estimation module before the
point cloud registration step. A key point-based approach
would reduce the computational load by ruling out the
necessity to deal with a complete point cloud with large number
of points. It will make it possible to use the framework on
complex object assemblies with a large number of objects
without compromising the inference time. Estimated assembly
poses can also be used to prune unfeasible object grasp can-
didates in grasp detection networks. Moreover, complex robot
manipulation tasks that involve additional constraints will be
considered, as the next step of assembly pose estimation. This
includes specific placement direction or motions, as found in
insertion tasks, such as peg-in-hole or clamping.

(a) (b)

Fig. 7: Diesel engine assembly pose estimation results for eight rocker arms. Point cloud registration utilizes base regions of
interest (ROI) on the assembly surface (a), obtained from semantic segmentation (b). The eight estimated assembly poses are
highlighted with 3D bounding boxes (b).

VI. Conclusion

This work proposed an assembly pose estimation method
for robot manipulation and assembly tasks, utilizing semantic
segmentation and point cloud registration between target and
source point clouds. The work also presented a synthetic
data generation pipeline as an improvement to existing object
pose estimation datasets. Our approach is evaluated with
suitable metrics on two simulated gear assembly datasets,
which indicates that point cloud registration is well capable
of estimating 6D assembly poses for object assemblies. In
addition, we demonstrate the approach on a real industrial
assembly task, i.e., Diesel engine assembly, which verifies that
feasible assembly poses can be estimated for real applications.

Acknowledgements

Project funding was received from Helsinki Institute of
Physics’ Technology Programme (project; ROBOT) and Eu-
ropean Union’s Horizon 2020 research and innovation pro-
gramme, grant agreement no. 871252 (METRICS).

References
[1] K. Kleeberger, R. Bormann, W. Kraus, and M. F. Huber, “A survey on

learning-based robotic grasping,” Current Robotics Reports, pp. 1–11,
2020.

[2] X. Liang and H. Cheng, “RGB-D camera based 3D object pose
estimation and grasping,” in IEEE Annual International Conference on
CYBER Technology in Automation, Control, and Intelligent Systems
(CYBER), 2019, pp. 1279–1284.

[3] M. Q. Mohammed, K. L. Chung, and C. S. Chyi, “Review of
deep reinforcement learning-based object grasping: Techniques, open
challenges, and recommendations,” IEEE Access, vol. 8, pp. 178 450–
178 481, 2020.

[4] G. Du, K. Wang, S. Lian, and K. Zhao, “Vision-based robotic grasping
from object localization, object pose estimation to grasp estimation for
parallel grippers: a review,” Artificial Intelligence Review, vol. 54, pp.
1677–1734, 3 2021.

[5] Y. He, H. Huang, H. Fan, Q. Chen, and J. Sun, “FFB6D: A full flow
bidirectional fusion network for 6D pose estimation,” in IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR),
2021.

[6] Y. He, W. Sun, H. Huang, J. Liu, H. Fan, and J. Sun, “PVN3D: A deep
point-wise 3D keypoints voting network for 6DoF pose estimation,” in
IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), 2020.

[7] K. Kleeberger, F. Roth, R. Bormann, and M. F. Huber, “Automatic grasp
pose generation for parallel jaw grippers,” in International Conference
on Intelligent Autonomous Systems, 2021, pp. 594–607.

[8] H. Xu, Y. Sun, Q. Sun, M. Yang, J. Chen, B. Qiang, and J. Wang,
“3D grasp pose generation from 2D anchors and local surface,” in ACM
SIGGRAPH International Conference on Virtual-Reality Continuum
and Its Applications in Industry, 2023, pp. 1–7.

[9] B. S. Zapata-Impata, P. Gil, J. Pomares, and F. Torres, “Fast geometry-
based computation of grasping points on three-dimensional point
clouds,” International Journal of Advanced Robotic Systems, vol. 16,
no. 1, 2019.

[10] A. Mousavian, C. Eppner, and D. Fox, “6-DOF graspnet: Variational
grasp generation for object manipulation,” in IEEE/CVF International
Conference on Computer Vision, 2019, pp. 2901–2910.

[11] A. Zeng, K.-T. Yu, S. Song, D. Suo, E. Walker, A. Rodriguez, and J. Xiao,
“Multi-view self-supervised deep learning for 6D pose estimation in
the Amazon Picking Challenge,” in IEEE international conference on
robotics and automation (ICRA), 2017, pp. 1386–1383.

[12] J. Wong, V. Kee, T. Le, S. Wagner, G.-L. Mariottini, A. Schneider,
L. Hamilton, R. Chipalkatty, M. Hebert, D. Johnson, J. Wu, B. Zhou,
and A. Torralba, “SegICP: Integrated deep semantic segmentation and
pose estimation,” in IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), 2017, pp. 5784–5789.

[13] V. Badrinarayanan, A. Kendall, and R. Cipolla, “SegNet: A deep
convolutional encoder-decoder architecture for image segmentation,”
IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 39, no. 12, pp. 2481–2495, 2017.

[14] H. Xu, G. Chen, Z. Wang, L. Sun, and F. Su, “RGB-D-based pose
estimation of workpieces with semantic segmentation and point cloud
registration,” Sensors, vol. 19, no. 8, p. 1873, 2019.

[15] Z. Wang, J. Fan, F. Jing, Z. Liu, and M. Tan, “A pose estimation
system based on deep neural network and ICP registration for robotic
spray painting application,” The International Journal of Advanced
Manufacturing Technology, vol. 104, pp. 285–299, 2019.

[16] R. B. Rusu, “Semantic 3D object maps for everyday manipulation in
human living environments,” KI-Künstliche Intelligenz, vol. 24, pp. 345–
348, 2010.

[17] Y. Chen and G. Medioni, “Object modelling by registration of multiple
range images,” Image and vision computing, vol. 10, no. 3, pp. 145–155,
1992.

[18] T. Hodaň et al., “BOP: Benchmark for 6D object pose estimation,” in
European Conference on Computer Vision (ECCV), 2018, pp. 19–34.

[19] S. Ahmad, K. Samarawickrama, E. Rahtu, and R. Pieters, “Automatic
dataset generation from cad for vision-based grasping,” in 20th Interna-
tional Conference on Advanced Robotics (ICAR), 2021, pp. 715–721.

[20] Q.-Y. Zhou, J. Park, and V. Koltun, “Open3D: A modern library for 3D
data processing,” arXiv:1801.09847, 2018.

[21] S. Hinterstoisser et al., “Model based training, detection and pose
estimation of texture-less 3D objects in heavily cluttered scenes,” in
Asian Conference on Computer Vision (ACCV), 2012, pp. 548–562.

[22] Y. Wu, A. Kirillov, F. Massa, W.-Y. Lo, and R. Girshick, “Detectron2,”
https://github.com/facebookresearch/detectron2, 2019.

https://github.com/facebookresearch/detectron2

	Introduction
	Related Work
	Proposed Method
	Object and Grasp Pose Detection
	Assembly Pose Estimation

	Evaluation
	Implementation
	Metrics
	Results

	Discussion
	Conclusion
	References

