
AI-HUB 2.0 PROJECT REPORT:

Application Of Large Language
Models in Software Engineering1

Muntaha Binte Alam

Tampere University

August 31st, 2023

1This work has been made possible thanks to the financial support from the European
Union under the REACT-EU initiative, a key element of the EU’s response to the COVID-
19 pandemic. By fostering resilience, the EU demonstrates its commitment to supporting
member states, regions, and communities in navigating through the crisis, promoting a
green, digital, and inclusive recovery, and reinforcing the social fabric of Europe.

Abstract

This technical report provides an exploration of Large Language Models

(LLMs) within the context of software development, offering insights into

their definition, examples, applications, and integration strategies. It fo-

cuses into the essential concepts and terminology pertinent to LLMs, includ-

ing natural language processing (NLP), tokenization, embedding, attention

mechanisms, pre-training, transfer learning, fine-tuning, and the transformer

model architecture. The report further discusses popular LLM architectures

for software engineering, emphasizing cloud-based solutions and their advan-

tages.

In addressing data preparation for LLM training, the document outlines

methods for collecting, cleaning, preprocessing, and annotating both code

and natural language data. It presents training techniques such as super-

vised and unsupervised learning, transfer learning, and fine-tuning LLMs

for specific software development applications. Evaluation metrics for as-

sessing LLM performance in a software context are also discussed, covering

both intrinsic and extrinsic metrics like accuracy, precision, recall, BLEU,

perplexity, METEOR, ROUGE, and CHRF score.

Tools and libraries for LLM development, including deep learning frame-

works TensorFlow and PyTorch, as well as pre-trained models for code-

related tasks, are reviewed. Practical guidance for fine-tuning open-source

pretrained models, including step-by-step guides, tips, challenges, and issues,

is provided. The document explores optimizing LLMs for software company

use, focusing on model compression, pruning, quantization, distillation, and

the maintenance of LLMs within the software development lifecycle. Future

developments are also addressed.

Version number:1.0

State of publicity:Public

Preface

Background. The AI Hub 2.0 project is designed to enhance Tampere’s role

as a regional center for artificial intelligence, focusing on health, well-being,

and the integration of sustainable, energy-efficient systems within industrial

applications. This initiative, an expansion of the AI Hub established in

2019, aims to broaden its operational scope and impact regionally. Lever-

aging Tampere’s strong healthcare, service, and academic foundations, the

project will facilitate the adoption of AI technologies by local industries, par-

ticularly in the development of intelligent, energy-efficient machinery.

Context. This technical report is part of work of WP5, which enhances

awareness of new technologies, especially the use of generative AI applica-

tions. The goal of this work package is to experiment with, introduce, assess

risks, plan roadmaps, and develop related expertise in generative AI technolo-

gies like ChatGPT, both in research personnel and within the local business

community. The key tehnology to learn is Large Language Model and how

it can be applied, ie., trained and fine-tuned. The application domain is

software engineering, which is foundational to all domains impacted by AI-

HUB 2.0. Based on the results, applications can be planned for training and

fine-tuning LLMs in other segments

1

Contents

Abstract 1

Preface 1

1 Introduction 5

1.1 Defination of Large Language Model: 6

1.1.1 Example Of LLMs: 6

1.2 Applications and Use Cases of LLMs in Software Development 6

1.2.1 How LLMs are applied in Software Development . . . 7

2 Integrating LLMs into Software Development 14

2.1 Key Concepts and Terminology 14

2.1.1 NLP . 14

2.1.2 LLM . 15

2.1.3 Tokenization . 15

2.1.4 Embedding . 16

2.1.5 Attention . 16

2.1.6 Pre-Training . 16

2.1.7 Transfer Learning . 16

2.1.8 Fine- Tuning . 16

2.1.9 Transformer model . 17

2.2 Popular LLM Architectures for Software Engineering 17

2.2.1 LLMs as a Service: Cloud-based Solutions 20

2.2.2 Advantages and Considerations of Cloud-Based Solu-

tions for Large Language Models 22

2

3 Data Preparation for LLM Training in Software Companies 24

3.0.1 Data Collection: Leveraging Software Documentation

and Repositories . 24

3.1 Data Cleaning and Preprocessing: Techniques for Code and

Text . 25

3.1.1 Handling Code data 25

3.1.2 Managing Natural Language Data 26

3.1.3 Data set Splitting and Annotation for Software Devel-

opment Tasks . 27

3.1.4 Annotation Techniques 28

4 LLM Training Techniques for Software Engineering 30

4.1 Supervised Learning with Software-related Datasets 30

4.2 Unsupervised Learning for Code and Natural Language . . . 31

4.3 Transfer Learning for Software-specific Tasks 32

4.4 Fine-tuning LLMs for Software Development Applications . . 33

5 LLM Evaluation Metrics in Software Context 35

5.1 Intrinsic Metrics . 35

5.2 Extrinsic metrics . 36

5.2.1 Accuracy . 36

5.2.2 Precision . 36

5.2.3 Recall . 37

5.2.4 Bilingual Evaluation Understudy (BLEU): 37

5.2.5 Perplexity: . 37

5.2.6 METEOR: . 37

5.2.7 ROUGE: . 38

5.2.8 CHRF Score: . 38

6 Tools and Libraries for LLM Development in Software Com-

panies 39

6.1 Frameworks for Deep Learning 39

6.1.1 TensorFlow . 40

6.1.2 PyTorch . 40

3

6.2 Pre-trained Models for Code Related tasks 42

6.2.1 Starcoder . 42

6.2.2 CodeT5 . 43

7 Practicalities For Fine tuning Open Source Pretrained Mod-

els 45

7.0.1 Step by Step Guide in Fine tuning 45

7.0.2 Tips for Fine tuning 50

7.0.3 Challenges and Issuses 51

8 Optimizing LLMs for Software Company Use 53

8.1 Model Compression and Pruning for Efficient Deployment . . 53

8.2 Quantization and Distillation for Resource-Constrained Envi-

ronments . 54

8.2.1 QLORA and LORA: 55

8.3 Monitoring and Maintaining LLMs in Software Development

Lifecycle . 55

9 Future Trends and Research Directions 57

9.0.1 Challenges in LLM Development for Software Compa-

nies . 57

9.1 Future Directions of LLM and Software Engineering 59

9.2 Truthfulness of LLMs . 60

9.3 Ethical AI and Responsible LLM Development in Software

Industry . 60

10 Conclusion 62

10.1 Summary of Key Findings for Software Companies 62

10.2 Recommendations for LLM Practitioners in Software Devel-

opment . 63

10.3 Final Thoughts . 64

4

Chapter 1

Introduction

Large Language models (LLM) have been a buzzword that took the internet

by storm in recent months, especially after the arrival of ChatGPT. As an

answer to this newly launched language model, other LLMs such as Google’s

bard have been introduced which proves that LLMs are here to stay for a

longer time Openai.

Additionally, language models are expanding opportunities since they

can automate operations, reduce costs and time, and improve task accuracy.

These are a few of the elements that make software companies interested in

implementing LLMs in their operations. Large language models, however,

are a recent innovation in computer science. Business executives might not

be knowledgeable about such models as a result. We penned this study to

educate interested software company executives in large language models:

• Definitions

• Applications and Use Cases of LLMs in Software Development

• Challenges and Ethical Considerations in Software Context

5

1.1 Defination of Large Language Model:

LLM is a type of machine learning model that produces outputs for various

natural language processing (NLP) tasks, such as text generation, question

answering, and machine translation. Large language models are often trained

on enormous volumes of text data, frequently consisting of billions of words,

and are typically built on deep learning neural networks such as the Trans-

former architecture. Larger models, like Google’s BERT model, can produce

results for a variety of tasks because they are trained with a large data set

from a variety of data sources.[Wodecki, July 2, 2022] [Vaswani, 2017]

1.1.1 Example Of LLMs:

Though ChatGPT is the most commonly known LLM that has gained at-

traction these days, but a lot of other LLMs have been here which are also

quite worth the mentions.

To name a few common LLMs, The table below introduces the 7 largest

large language models by parameter size :

1.2 Applications and Use Cases of LLMs in

Software Development

The initial research in the computer science field has indicated that LLMs

can help with software engineering jobs quite well. Code generation models

like GitHub’s CoPilot is one of the examples of the various tasks LLM can

assist in software engineering tasks. In this section, we will concentrate on the

implications of LLMs in the software business and their potential for software

development.[Ozkaya, May-June 2023] Though it may seem like only software

engineering depends on the Large language model for different purposes, the

6

Model Developer Parameter Size

WuDao 2.0 Beijing Academy of Artificial Intelligence 1.75 trillion

MT-NLG Nvidia and Microsoft 530 billion

Bloom Hugging Face and BigScience 176 billion

GPT-3 OpenAI 175 billion

LaMDA Google 137 billion

ESMFold Meta AI 15 billion

Gato DeepMind 1.18 billion

Table 1.1: Examples of LLMs
[AIMultiple, 2023]

developments of LLMs also need to interact with software professionals in

various aspects. In order to examine the interactive relationship between

LLM and software engineering, we will also briefly cover this viewpoint in

this section.

1.2.1 How LLMs are applied in Software Development

The process of software development involves quite a lot of steps, LLMs can

be implemented in many of them. Here, we would like to focus on how Large

language models are implemented in those steps.

Requirement Generation :

Software Engineers must have a thorough understanding of every need before

they can create a system or piece of software. But doing so can be pretty

laborious as requirements documents are detailed and complex sources of

knowledge. If we have a database with thousands of requirements, engineers

would have to manually connect or group requirements together by hand

7

without LLM. It would have been frustrating, quite time-consuming, and

still prone to errors. With LLMs, things are faster and there is less room for

mistakes. The language models revolutionize the process by giving require-

ment engineers significant information and technological expertise.LLMs are

essential in producing precise and contextually aware customer stories, de-

scriptions of products, and feature recommendations. The development team

might give explicit guidelines and criteria to LLMs so they can write narra-

tives that support the project’s goals. By considering a variety of options and

the views of users, this method enables it easier to design and specify project

requirements[Abbas]. LLM can not only help to set up the requirements, but

they can also help in prioritizing or validating the requirements. By looking

for contradictions, ambiguities, or conflicts in the requirement documents,

language models can help in requirement validation.[Hou et al., 2023] They

can help make sure that the requirements are precise and practical by offering

suggestions or clarifications. Following that, the requirements’ completeness

is assured, strengthening the software development process[Abbas].

Implementation / App development :

Implementation of app development is the actual process when all the source

code for a piece of software is written. This process is time-consuming, cum-

bersome, and sometimes tiring and challenging which calls for automatic

code creation. Code generation is a process in which source code is automat-

ically generated based on functional requirements such as natural language

descriptions or pseudo-code algorithms. In recent years, large pre-trained lan-

guage models such as AlphaCode and the GPT3 series have demonstrated

impressive capabilities in code generation. Other open-source code genera-

tion models include GPT-Neo[Sid Black and Biderman., 2021], GPT-J [Wang

and Komatsuzaki, 2021], CodeParrot[Thomas Wolf and Rush., 2020], Poly-

Coder[Frank F. Xu and Hellendoorn., 2022], and InCoder[Daniel Fried and

Lewis., 2022.].

Software developers can give large language models high-level descriptions

of what they want the code to do, and the LLMs will produce the relevant

8

code. As a result, less manual coding will be needed during the initial stages

of software development.[Jiang et al., 2023]

Automatic code generation is not the only step where LLMs can con-

tribute, rather they can be useful for debugging, error handling, restructur-

ing, translation, and domain-specific code generation.

Coding errors can be found and fixed with the help of large language models.

They are able to examine code samples, spot potential mistakes, and rec-

ommend changes or different strategies. This can speed up debugging and

increase code quality [Hou et al., 2023].

Large language models can make code completion suggestions based on

the context and patterns found in the source. They can help developers write

code more quickly and easily by suggesting names for functions, variables, or

even complete snippets of code. This can boost output greatly and cut down

on syntax errors.[Ciniselli et al., 2021].

Code snippets can be analyzed by language models, which can then

suggest refactoring changes to enhance readability, performance, or quality.

They can point out redundant code, recommend improved code structure, or

offer more effective strategies. This can aid developers in best practices and

code optimization.

In order to produce code specifically suited for a given domain or framework,

language models can be fine-tuned.[Wang et al., 2021] For instance, models

can be trained on certain frameworks or libraries, such as TensorFlow or

Django, allowing them to produce code unique to those tools.

Automated Testing with LLMs

Software testing after development is an essential component of software de-

velopment that takes a lot of time, resources, and focus. Implementing Large

Language model in this phase can actually help businesses to provide a bet-

ter outcome. The requirements that have been introduced in requirement

generation phase, or the codes that have been written ; based upon that ;

Large Language model can assist in generating test cases.

9

With the purposes of generating test cases, the LLMs can generate realistic

and diverse data sets by understanding data dependencies and as a result

the efficiency and coverage of automated tests can be enhanced . They can

analyze test case requirements and produce corresponding test scripts which

reduces the manual effort required for scripting [Schäfer et al., 2023]

LLMs can understand code semantics, extract patterns, and interpret

natural language descriptions related to software functionalities which in-

volves their natural language processing and code comprehension capabili-

ties. With the use of language models, test results, logs, and reports can

be analyzed.[Hou et al., 2023] By examining error messages, log entries, or

natural language descriptions, the LLMs can assist in discovering trends,

patterns, or typical failure circumstances which help with trouble shooting

and issue identification.

Additionally, LLMs can help create test cases from descriptions in normal

language, promoting improved cooperation between developers and testers.

They also assist in identifying test coverage gaps and make pertinent test case

recommendations, ensuring thorough testing and lowering the possibility of

issues going undetected. LLMs contribute to the creation of more depend-

able and high-quality software products by increasing test effectiveness and

efficiency. [Hou et al., 2023] [Schäfer et al., 2023] .

Language models be considered as intelligent oracles for automated testing.

By comparing the expected output or behavior of a system with the actual

results obtained during testing, they can help identify deviations, abnormal-

ities, or unexpected outcomes. This can improve the accuracy and reliability

of the automated tests.

Deployment

The deployment stage of software developments starts with environment set

up and LLM can assist in setting up the environment by analyzing require-

ments and generating instructions for installing dependencies or libraries.

10

This step will ensure that the deployment environment is properly prepared

to run the software[Gong et al., 2023].

Language models can aid in automating the deployment process by gener-

ating deployment scripts or configuration files. They can analyze deployment

requirements, infrastructure specifications, and deployment best practices to

generate scripts that automate the deployment of the software in various en-

vironments.

By analyzing infrastructure requirements and specifications, large language

models can provide guidance or generate code snippets for provisioning in-

frastructure resources [Wan et al., 2022].

LLMs are capable of supporting CI/CD (Continuous Integration/Contin-

uous Deployment) pipelines by analyzing code repositories, build scripts, and

deployment configurations. By automating build processes, identifying de-

pendencies, and generating CI/CD pipeline configurations, they can enable

smoother and more efficient software deployment workflows[Hou et al., 2023].

Language models can generate release notes and documentation for soft-

ware deployments.They are able to create release notes that highlight the new

features, bug fixes, and known issues while also summarizing the changes.

Additionally, they can help create or update deployment documentation,

which will make it simpler for users or administrators to comprehend and

implement the deployment procedure[Arakelyan et al., 2023].

They can provide suggestions or generate configurations based on environment-

specific requirements which ensures that that the software is correctly con-

figured for deployment in different settings.

By examining logs, monitoring data, or system metrics, large Language

models can help validate the implementation. They can offer insights for

troubleshooting or performance optimization and assist in locating perfor-

11

mance bottlenecks or other issues in the installed software.

Maintenance

Large Language models can still be helpful in software development process

during the maintenance phase. They can assist in locating the underlying

causes of problems and offer insights for troubleshooting and resolving them

by examining error logs, user input, or system activity.

In some cases, language models can generate automated bug fixes or code

patches based on error reports or issue descriptions.[Chen et al., 2023] They

can analyze the code base, understand the context, and suggest potential

fixes for common or repetitive bugs. These suggestions can then be reviewed

and applied by human developers.

Large Language models can offer suggestions for refactoring the code

to enhance its efficiency, quality, and maintainability. They can look for

anti-patterns or assess the code base and recommend refactoring or different

implementations that follow best practices.

Large language models can help optimize software performance by ana-

lyzing code, logs, or system metrics. They can identify potential bottlenecks,

suggest performance optimizations, or guide developers in applying perfor-

mance tuning techniques to enhance the efficiency and responsiveness of the

software[Hou et al., 2023].

Language models can assist in identifying potential security risks in the

software by analyzing code, configuration files, or security guidelines, they

can provide insights and recommendations to enhance the security posture

of the system. This can include suggestions for secure coding practices,

vulnerability scanning, or access control improvements.[Alqarni and Azim,

2022].

12

Large Language models analyze system logs and monitoring data to iden-

tify patterns, anomalies, or recurring issues. By processing and understand-

ing the log entries, they can provide insights into system behavior, perfor-

mance degradation, or potential issues that require attention.

Language models can support the maintenance of knowledge bases, FAQs

(Frequently asked questions), or documentation [Li et al., 2022].They can cre-

ate or update important documentation by analyzing new data, updates, or

modifications to the system. This guarantees that the documentation is ac-

curate and represents the software’s current status. .

Language models are capable of assessing the impact of code changes or

system updates. By analyzing the code base and relevant dependencies, they

can identify potential areas affected by changes and provide insights into po-

tential risks or conflicts that need to be addressed.

13

Chapter 2

Integrating LLMs into Software

Development

One of the reasons large language models are being popular in different busi-

ness is that they can make the work easier and smoother and also improve

the work quality.Consequently, integrating Large Language Models (LLMs)

can greatly improve a variety of activities involving natural language pro-

cessing (NLP) and code generation in the field of software development.This

process of integration involves understanding key concepts and terminology,

exploring popular LLM architectures for software engineering, and consid-

ering cloud-based solutions for accessing LLM capabilities. It’s crucial to

get to know certain basic terms and concepts in order to comprehend the

integration process.

2.1 Key Concepts and Terminology

2.1.1 NLP

NLP is a branch of artificial intelligence (AI) that aims to make it possible

for computers to recognize, interpret, and produce human language.[Ruth

Brooks]It includes activities like sentiment analysis, named entity identifica-

tion, machine translation, and text categorization.

14

2.1.2 LLM

LLMs are deep learning models that have been trained on vast volumes of

text data in order to discover linguistic patterns and structures [Hadi et al.,

2023]. They can produce text that is human-like and are useful for a variety

of NLP applications, including sentiment analysis, language translation, code

generation, and more.

Figure 2.1: LLM Keywords (need to revise and change the caption)

2.1.3 Tokenization

Tokenization is the process of breaking down text into smaller units called to-

kens.Depending on the chosen tokenization approach, tokens could be words,

subwords, or characters. In NLP, tokenization is a basic step that enables

models to process text in detail [Roumeliotis and Tselikas, 2023]

15

2.1.4 Embedding

In a high-dimensional space, the technique of embedding is utilized to rep-

resent words or tokens as continuous vectors. Word embeddings record the

semantic and syntactic connections between words, allowing models to com-

prehend the meaning of words in the context of a particular text [Wikipedia,

2023]

2.1.5 Attention

LLM architectures must have attention mechanisms. They enable the model

to generate output by focusing on various segments of the input sequence.

The model’s capacity to recognize long-range dependencies and its compre-

hension of context are both improved by attention processes.

2.1.6 Pre-Training

An LLM is pre-trained using a sizable corpus of text data to gain general

knowledge and linguistic patterns. Pre-training helps the model develop a

solid grasp of syntax, semantics, and contextual relationships as it learns to

predict missing words or sentences [Hendrycks et al., 2019]

2.1.7 Transfer Learning

Transfer learning is a strategy for using information gained from one job to

enhance performance in a related task. LLMs can be fine-tuned on certain

downstream tasks, like code generation or natural language interpretation,

to adjust their learnt representations to the target domain after being pre-

trained on large-scale data-sets [Tormos et al., 2022]

2.1.8 Fine- Tuning

A pre-trained LLM is further trained on a particular task or data-set as part

of the fine-tuning phase. The model can fine-tune its parameters to better

16

match the requirements of the target task or area [Tormos et al., 2022].

LLMs can be fine-tuned to better perform on particular software en-

gineering activities like code generation and code completion by including

domain-specific knowledge.

2.1.9 Transformer model

A transformer model is a neural network that follows relationships in se-

quential input, such as the words in this sentence, to learn context and

subsequently meaning.

Transformer models use a growing collection of procedures calledd atten-

tion or self-attention to find hidden relationships between even distant data

pieces in a series.[nvidia]

2.2 Popular LLM Architectures for Software

Engineering

There are three main types of large language models (LLMs) based on the

transformer model architecture :

Autoregressive Language Models

Auto-regressive models generate text by predicting the next word in a se-

quence based on the previous words.They are trained to maximize each

word’s likelihood given its context within the training data set. The GPT

(Generative Pre-trained Transformer) series from OpenAI, of which GPT-4

is the most recent and powerful version, is the most well-known illustration

of an autoregressive language model [Recchia, 2021]

Autoencoding Language Models

17

On the other hand, Auto encoding models discover how to create a fixed-

size vector representation (embeddings)of input text by reconstructing

the original input from a corrupted or hidden version of it. These models

are trained to predict words that are either missing or masked in the input

text by utilizing the surrounding context.[HuggingFace, b] One of the most

well-known models for automatic language encoding was created by Google;

which is BERT (Bidirectional Encoder Representations from Transformers).

For a range of Natural language processing tasks, including sentiment analy-

sis, named entity identification, and question-answering, it can be fine-tuned

The third option is the combination of autoencoding and autoregressive .T5

model is one of the example of such a model [Du et al., 2022] Several LLM ar-

chitectures have shown promising results in the field of software engineering.

Some popular architectures include:

GPT-3 (Generative Pre-trained Transformer 3)

GPT-3 (Generative Pre-trained Transformer 3) is an auto regressive model

which can generate output tokens one at a time, conditioned on the previously

generated tokens.GPT-3 uses a transformer architecture with multiple layers

of self-attention mechanisms to model the dependencies between the input

and output tokens. GPT- 3 models can be applied to code generation, doc-

umentation, and code completion in software development.Developers can

now fine-tune GPT-3 on their own data, creating a custom version tailored

to their application.[OpenAI] Customizing makes GPT-3 reliable for a wider

variety of use cases which can include tasks related to software engineering.

Codex

An LLM, or artificial intelligence model, such as Codex, which has been

trained to predict text to follow a given string of input text. Codex is a

fine-tuned version of OpenAI’s GPT-3 which means that it inherits GPT-3’s

language capacity and is given further training on a wide range of program-

ming languages [Sam Manning and Eisner4., 3/3/2022].Due to its natural

language processing characteristics, it is remarkably capabilities to general-

18

ize to a variety of coding jobs, including code generation, code completion,

code repair, code translation, and code question answering. These features

have made it useful for a variety of practical tasks, including providing doc-

umentation or unit tests for code snippets, finishing partially written code,

writing explanations for code snippets, and correcting errors in code. It can

also generate code from natural language descriptions.

Bert

BERT (Bidirectional Encoder Representations from Transformers) is an auto-

encoding language model that can be fine-tuned for various software engi-

neering tasks such as code classification, code summarization, bug detection,

and natural language understanding in software-related documents. BERT’s

ability to capture contextual information and its pre-training on a large cor-

pus of text make it effective for understanding code and text in software

engineering applications.

Bert-SE a model based on Bert has been introduceed for software engineer-

ing domain which is destined for textual classification in the field of software

engineering.[Eliane Maria, 18/9/2020]

Code-Bert

Code-BERT is bimodal pre-trained model based on Bert architecture for

natural language (NL) and programming language (PL) like Python, Java,

JavaScript, etc. CodeBERT can capture the semantic correlation between

natural language and programming language.It generates general-purpose

representations which can extensively serve both NL-PL generation (code

documentation generation) and comprehension (natural language code search)

tasks. [Zhangyin Feng1, 18/9/2020]

Code2Vec

Code2Vec is a model which learns distributed representations of code snip-

pets. It can be used for tasks such as code similarity detection, code rec-

19

ommendation, or even code clone detection. By encoding code snippets into

vectors,we can compare or match them based on their semantic similarities

. The model is more focused on learning code representations rather than

generating or predicting code sequences.[URI ALON, 30/10/2018]

Transformer-XL

Transformer-XL is a variant of the transformer model that is designed to

handle longer sequences and capture longer-range dependencies. It can be

useful for software engineering tasks that involve analyzing and understand-

ing large code bases or lengthy software documentation.

These are just some examples of the models that can be used for software

engineering related tasks, but there exists also other models that can be use-

ful in this context.

2.2.1 LLMs as a Service: Cloud-based Solutions

Large Language models are increasingly being offered as a service through

cloud-based solutions, providing convenient access to their capabilities and

Companies can get the most potential from Large Language Models.Several

well-known platforms and services follows as below:

OpenAI API

Developers can make API calls online as the OpenAI API is hosted on Ope-

nAI’s cloud infrastructure. The potential of OpenAI’s models can thus be

utilized without the need to build and maintain own computational infras-

tructure.[Greg Brockman]The cloud-based solution from OpenAI is built to

manage many API requests and can grow to suit any application’s needs.

This guarantees that program can keep performance while managing heavy

20

workloads. A simple method for incorporating the models into own programs

or services is the OpenAI API. It is simple to interact with the API and pro-

cess the results because developers can perform API calls using conventional

HTTP requests and receive responses in JSON format.

Hugging Face

Hugging Face is a popular platform for NLP models with a wide range of

pre-trained Large Language models. These models can be useful for user

specific tasks such as text generation,text classification , sentiment analysis

etc. Hugging face provides a library and API for easy integration of LLMs

into different tasks which can be related to software engineering. They are

continuously introducing new models in their website.[HuggingFace, a]

Microsoft Azure ML

The Microsoft Azure ML platform provides a range of cloud-based machine

learning capabilities, including LLMs [azu, 2023].It offers tools for training,

fine-tuning, and deploying Large Language Models in software development

projects.Azure ML offers a versatile and adaptable framework that can be

tailored to different software engineering use cases. This process allows de-

velopers to leverage machine learning techniques to enhance the processes

and results of software development.

Google Cloud AI Platform

Google Cloud AI is a cloud-based platform provided by Google that offers

a wide range of tools and services for building, deploying, and managing

machine learning models [goo, A]. It provides a scalable and flexible infras-

tructure to support various software engineering tasks.It supports training

models on powerful GPU and TPU accelerators, enabling faster training and

experimentation on large data sets. Google Cloud AI Platform supports ver-

sion control and collaboration for managing models, experiments, and code.

It can integrate with Git and provides services for tracking changes, manag-

ing code repositories, and enabling collaboration among team members.

21

2.2.2 Advantages and Considerations of Cloud-Based

Solutions for Large Language Models

Undoubtedly, cloud-based LLM services enable developers to take advantage

of the power of language models without the need for significant resources

from their end. Yet, we cannot help considering the challenges and issues

related in this context.

Accessibility: Pre-trained models are easily available through cloud-

based LLM services which makes it easier for developers to leverage them

into their applications without requiring a considerable amount of process-

ing power. Language-related functionality can be developed and deployed

more quickly thanks to this accessibility.

Scalability: Depending on demand, cloud platforms can dynamically scale

their processing capacity. This scalability, which enables effective resource

usage and supports variable workloads, is especially helpful during the fine-

tuning or inference stages of LLMs.

Cost-effectiveness: Software businesses can save money by using cloud-

based LLM services rather than purchasing pricey hardware up front. It is

more cost-effective because they can pay for the resources they actually use.

Better cost control and scalability are made possible by this pay-as-you-go

concept. Cloud service providers use strong security precautions to protect

users’ privacy and data.

Security and Privacy: To guarantee the security of sensitive code and

data, cloud providers adopt strong security measures and data protection

processes. Developers can benefit from the security infrastructure offered

by the cloud provider by utilizing cloud-based LLM services which reduces

potential security risks.

22

However, there are other factors to take into account and difficulties that

come with using LLMs as a service, such as:

Cost management: While cloud-based solutions provide flexibility, it’s

crucial to monitor and optimize costs while fine-tuning or employing LLMs

in production to prevent unforeseen costs.

Dependency on External Services: Software firms that rely on cloud-

based LLM services are reliant on the accessibility and dependability of the

service provider.

Privacy Issues: When dealing with proprietary or sensitive code, privacy

concerns may arise when utilizing cloud-based solutions. Analyzing data pri-

vacy rules and ensuring compliance with legal and regulatory standards are

necessary for this purpose.

23

Chapter 3

Data Preparation for LLM

Training in Software

Companies

Effective data preparation is one of the most important task in the training

of Large Language Models (LLMs) for software organizations. This section

addresses the difficulties associated with LLM training in software develop-

ment environments by concentrating on the critical phases in data prepa-

ration. Software businesses can gather, clean, pre-process, split, annotate,

and enhance the data to guarantee the best training outcomes by utilizing

software documentation, repositories, and other pertinent sources.

3.0.1 Data Collection: Leveraging Software Documen-

tation and Repositories

Gathering Comprehensive Software Documentation

The process can be initiated by identifying the documentation sources. We

need to determine the various sources of software documentation relevant to

data collection. These may include user manuals, technical specifications,

design documents, API documentation, code comments, issue trackers, and

version control repositories. The data collection may also include external

24

resources such as forums, online communities, and knowledge bases related

to the software. These sources can contain valuable information, discussions,

and best practices that can add to the documentation collection process.

Extracting Data from Software Repositories

Several techniques exists for extracting code snippets from version control

systems like Git, SVN, or Mercurial.One approach is to analyze the dif-

ferences (diff) between consecutive commits in the version control system.

These differences provides information about the added, modified, or deleted

lines of code. By parsing the differences, developers can extract the rele-

vant code snippets that were changed or added in each commit. Another

technique is to extract code snippets at the file level. Developers can iterate

through the files in each commit and extract the code snippets based on

specific criteria, such as function definitions, class definitions, or code blocks

enclosed within specific markers or annotations.

3.1 Data Cleaning and Preprocessing: Tech-

niques for Code and Text

3.1.1 Handling Code data

In the process of cleaning code data for further use, we may face some chal-

lenges which can include removing comments, normalizing formatting, han-

dling variable names, and addressing syntactical inconsistencies. By applying

suitable techniques both code and text data can be cleaned and prepossessed

[Hou et al., 2023] which will result in more consistent, meaningful, and man-

ageable data for further analysis, modeling, or training of large language

models.

Removing Comments

When developing software , programmers add comments to keep a track on

the task ,but these code comments often contain non-executable text and

25

should be removed to focus solely on the executable code. This can be

achieved by identifying and stripping out comment lines or blocks.

Duplicated instance deletion

It is common and frequent for duplicate instances. When prepossessing these

data, duplicated instance deletion techniques can be applied to remove du-

plicate samples from the dataset which can ensure data integrity [Xu et al.,

2022]

Intial Data Segmentation

This step is important as large language model may not be able to long

sequence of undtructed data. Therefore, initial data segmentationcan help

in splitting data into various categories as required ; For example, to split

into sentences or words [Kou et al., 2023] [Hou et al., 2023].

3.1.2 Managing Natural Language Data

When cleaning and prepossessing textual data some techniques such as re-

moving noise, handling special characters, dealing with stop words, and ap-

plying stemming or lemmatization should be focused on.[Thanaki, 2017]

Removing Noise

Textual data may contain irrelevant or noisy elements, such as HTML tags,

special characters, or URLs. Cleaning techniques like regular expressions or

library functions can be used to remove or replace such noise.

Handling Special Characters:

Special characters, such as punctuation marks or non-alphanumeric symbols,

may not contribute significantly to the meaning of the text. Removing or re-

placing them can help streamline the data. Techniques like character filtering

or Unicode normalization can be employed.[Thanaki, 2017]

26

Dealing with Stop Words:

Stop words are common words ; for example; ”the,” ”is,” or ”and” .They

often appear frequently in text but carry little semantic value. Removing

stop words can reduce noise and focus on the more informative content.

Stop word lists or libraries can be used for this purpose.

Applying Stemming or Lemmatization:

Stemming and lemmatization are techniques to reduce words to their base

or root form, capturing their essential meaning. This helps in reducing vo-

cabulary size and dealing with word variations. Stemming algorithms or

lemmatization libraries (e.g., NLTK)[nltk] can be utilized.

3.1.3 Data set Splitting and Annotation for Software

Development Tasks

This section focuses on exploring the approaches for dividing the data set

into training, validation, and testing sets to ensure proper evaluation and

model performance estimation.

Random Splitting

In random splitting, the order of the data set’s index is used to produce the

training, validation, and test sets. Therefore, before dividing, the entire data

set should be shuffled to avoid problem with class imbalance. [medium] This

approach ensures an unbiased distribution of data across the splits but may

not take into account specific characteristics or dependencies within the data

set.

Stratified Splitting

In stratified splitting, the data set is divided while maintaining the distri-

bution of specific attributes or labels across the splits. This is particularly

27

useful when dealing with imbalanced data sets or when certain attributes are

crucical for model evaluation. [ludwig]

Time-based Splitting

In this process, the data set splitting is done based on a temporal order,

where the training set contains data from earlier time periods, the validation

set includes data from a more recent period, and the testing set represents

the most recent data. This is common in scenarios where the model needs

to generalize to future unseen data.[ludwig][Chalokia]

Cross-validation

In Cross Validation, the data set is partitioned into multiple subsets or folds,

with each fold used as a validation set while training the model on the re-

maining folds. Therefore, cross validation provides more robust evaluation

by utilizing all data for training and validation.

3.1.4 Annotation Techniques

Data annotation, also known as data labeling ; as these terms are used in-

terchangeably, is the task of labeling objects for machine learning algorithms

in data-sets. This section discusses methods for annotating the data with

task-specific labels or tags to facilitate supervised or semi-supervised learn-

ing approaches.

Manual Annotation

In manual annotation, human experts annotate the data by assigning labels

or tags based on predefined criteria. Although this can be a time-consuming

process, it provides high-quality annotations tailored to the specific task.

Automated Annotation

In automated annotation, we leverage existing tools or algorithms to auto-

matically assign labels or tags to the data. This can involve techniques such

28

as keyword matching, topic modeling, or machine learning-based approaches.

Automated annotation can speed up the process but may require additional

validation and refinement.

Active Learning

Active learning is the process of combining manual and automated anno-

tation by starting with a small labeled data set and iterative selecting in-

formative samples for human annotation based on the model’s uncertainty

or confidence. This reduces the annotation effort while achieving effective

training data.

29

Chapter 4

LLM Training Techniques for

Software Engineering

For training large language models for software engineering related task , the

core knowledge about different techniques for training LLM is important.

This idea helps to efficiently choose which approach will be helpful for that

specific task with task-specific data set. These technique may include super-

vised learning, unsupervised learning, transfer learning and fine tuning and

this chapter will focus on these techniques.

4.1 Supervised Learning with Software-related

Datasets

Supervised learning, also known as supervised machine learning, is defined

by its use of labeled data sets to train algorithms that to classify data or pre-

dict outcomes accurately. The model modifies the weights when input data

is fed into it until the model is adequately fitted; which happens because of

the cross-validation process. [ibm].

In software engineering tasks, the technique will involve using labeled software-

related data sets, where each input example is associated with a correspond-

ing target label. In the context of software engineering, the input examples

30

can include code snippets, natural language descriptions, or a combination

of both [Hou et al., 2023]

To train a language model using supervised learning, the developers would

typically provide the input examples along with their corresponding labels

to the model during the training process. The model then learns to map

the input examples to the appropriate output labels based on the provided

training data. This approach can be used for various software engineering

tasks, such as code classification, code summarization, and more.

To help the model generalize well to new data, it is crucial to

make sure the data collection includes a variety of scenarios and

examples.

4.2 Unsupervised Learning for Code and Nat-

ural Language

Software engineering can also use unsupervised learning methods to develop

language models. Unsupervised learning, in contrast to supervised learning,

relies on the discovery of patterns, correlations, and structures within the

data itself rather than on labeled data.

Language models can learn representations and embeddings that capture

important information from the input data without the use of explicit labels

by utilizing unsupervised learning.

One popular unsupervised learning technique is pre-training language

models [Ge et al., 2023] using methods like auto encoders, generative adver-

sarial networks (GANs), or self-supervised learning. By predicting missing

pieces, fixing corrupted data, or resolving deceptive problems, these strate-

gies enable the model to learn meaningful representations of code and natural

language.

31

4.3 Transfer Learning for Software-specific Tasks

In transfer learning, the knowledge of an already trained machine learning

model is applied to a different but related problem. With transfer learning,

we generally try to re-use what has been learned in one task to improve gen-

eralization and performance in another task. We move the weights that a

network has picked up in ”task A” to a fresh ”task B.” The most typical ap-

proach is to apply what a model has learnt from a task with a lot of labeled

training data to a new task with little to no training data. We begin the

learning process using patterns discovered while completing a comparable

task, as opposed to starting from scratch. [builtin].

In the context of software engineering, transfer learning can be applied to

train language models on a large, general-purpose data set and then fine-tune

them on specific software-related tasks.

By using transfer learning, language models can benefit from the general

knowledge learned during pre-training, which helps them bootstrap their

understanding of software-specific tasks with limited task-specific training

data. This approach can lead to better performance, especially when the

target task has a small or limited labeled data set [Tormos et al., 2022] For

transfer learning in software engineering, a common approach is to use a

large-scale language model pre-trained on a vast corpus of code and natural

language, such as GitHub repositories or Stack Overflow. This pre-trained

model can then be fine-tuned on specific software-related tasks, such as code

completion, bug detection, or code summarization, using task-specific labeled

data.

Transfer learning can be used for code-related tasks by pre-training trans-

former models on a generic data set using a self-supervised task, such as

filling masked words in sentences. Then, these models are fine-tuned to sup-

port specific code-related tasks, such as automatic bug-fixing, injection of

code mutants, generation of assert statements, and code summarization.

A single model can be fine-tuned to support multiple tasks, possibly exploit-

32

ing the benefits of transfer learning. This means that knowledge acquired

to solve a specific task can be useful to boost performance on another task.

The Text-To-Text Transfer Transformer (T5) model is a pre-trained trans-

former model that has been used to support code-related tasks. The T5

model achieved better performance compared to state-of-the-art baselines in

the four code-related tasks mentioned above.[Mastropaolo et al., 2022]

4.4 Fine-tuning LLMs for Software Develop-

ment Applications

Fine-tuning in large language models (LLMs) involves re-training pre-trained

models on specific data sets which allows the model to adapt to the specific

context of the business needs. This process can help to create highly accurate

language models, tailored to own specific business use cases.[simform].

In the context of software development applications, fine-tuning large lan-

guage models involve taking a pre-trained model that has been pre-trained

on a diverse data set containing code and natural language, and updating its

parameters on a task-specific data set. By fine-tuning on task-specific data,

the LLMs can adapt to the specific requirements and nuances of software en-

gineering tasks which will lead to improved performance on the target task.

Large language models (LLMs) pre-trained on vast source code (“Code LLM”)

have achieved remarkable progress in code intelligence. For instance, with

the help of AI generative tools, software developers can now create and

maintain their codes easily, and eventually improve their productivity sig-

nificantly.[Yue Wang]

33

Figure 4.1: LLM fine tuning (need to revise and change the caption)

34

Chapter 5

LLM Evaluation Metrics in

Software Context

In the software context, Large Language Model’s evaluation metrics are used

to assess the performance of language models specifically for software-related

tasks. Evaluating language models in this context is crucial to ensure they

are effective, accurate, and reliable.The choice of evaluation metrics depends

on the specific software application and use case. Different tasks require

different metrics, and a combination of metrics is often used to provide a

comprehensive evaluation of a language model’s performance in the software

context. LLM Evaluation Metrics can be categorized into two main types:

Intrinsic Metrics and Extrinsic Metrics. In this chapter, we would like to

focus on these metrics.

5.1 Intrinsic Metrics

Intrinsic evaluation aims to measure the quality of embedding by assessing

their performance on specific Natural language processing tasks. These tasks

are related to the embedding space itself, such as word similarity, analogy,

and classification. [Safjan] Intrinsic evaluation captures how well the model

captures what it is supposed to capture on test sets from the corpus.

35

5.2 Extrinsic metrics

Extrinsic metrics evaluate a machine learning model based on its performance

on specific tasks or real-world applications. These metrics are often used to

assess how well the model will perform in the intended use case. The intrinsic

metrics that are used to evaluate NLP systems are as follows:

Figure 5.1: LLM evaluation metrics
[Yashaswini and Shylaja]

5.2.1 Accuracy

In classification jobs, the accuracy metric is employed to determine how

closely a measured value resembles a known value. When the output variable

is discrete or categorical, it is generally employed .

For instance, how often a sentiment classification algorithm is correct.

5.2.2 Precision

The accuracy metric would provide the proportion of labels with positive

labels compared to cases with positive labels assigned by the classifier. For

example, if identifying a cancer that is prevalent 1 per-chant of the time, a

model that always spits out “negative” will be 99% accurate, but 0% pre-

cise.[Yashaswini and Shylaja]

36

5.2.3 Recall

Recall measures how well the model can recall the positive class. Recall

value signifies the number of positive labels that the model has correctly

identified as positive [Yashaswini and Shylaja]. Precision and Recall are

complementary metrics that have an inverse relationship.[Afonja, 2017] If

both metrics are equally important then the F1 score can be used to combine

precision and recall into a single metric.

5.2.4 Bilingual Evaluation Understudy (BLEU):

The BLEU score evaluates the quality of text that has been translated

by a machine from one natural language to another [Yashaswini and Shy-

laja].A measurement of performance for evaluating the effectiveness of ma-

chine translation models is the BLEU Score. It assesses how effectively a

model interprets in different languages.

5.2.5 Perplexity:

Perplexity measures how well a language model predicts a given text. It

quantifies the level of uncertainty or surprise of the model when predicting

the next word. A lower perplexity score indicates that the model is better at

predicting the next word and, therefore, has a better understanding of the

language it is processing.

5.2.6 METEOR:

A precision-based metric for assessing the output of machine translation is the

Metric for Evaluation of Translation with Explicit Ordering (METEOR). It

avoids some of the BLEU score’s drawbacks, like exact word matching when

computing precision. Synonyms and stemmed words can be matched with a

reference term using the METEOR score.

On the basis of stemmed words and meanings, the n-grams can be matched.

METEOR calculates a score using unigram precision and recall.

37

5.2.7 ROUGE:

The evaluation metric Recall-Oriented Understudy for Gisting Evaluation

(ROUGE) assesses recall. It is frequently employed in machine translation

activities and for assessing the caliber of output content. However, as it

assesses recollection, summary tasks are where it is most frequently utilized.

5.2.8 CHRF Score:

Character level n-grams are crucial for the automatic evaluation of more

intricate metrics. The linguistically driven n-gram based F-scores, particu-

larly those based on Part-of-Speech tags and morphemes outperform popular

metrics like BLEU and TER in terms of correlating with human assessments

[Yashaswini and Shylaja]

38

Chapter 6

Tools and Libraries for LLM

Development in Software

Companies

The development of language models involves complex algorithms, vast amounts

of data, and powerful computational resources. These models are trained on

extensive corpora of text data and fine-tuned to perform specific tasks. To

achieve these goals, the companies needs to understand the resources, tools

for further implementation in the companies.The following sections will delve

into the specific tools and libraries that enable LLM development in software

companies, providing a comprehensive guide for practitioners, researchers,

and decision-makers in the field.

6.1 Frameworks for Deep Learning

The development of sophisticated language models requires powerful deep

learning frameworks that provide the necessary tools, libraries, and func-

tionalities. These frameworks enable researchers and developers to design,

train, and deploy algorithms. Here’s an in-depth look at some of the most

prominent deep learning frameworks used in Language Model Development

(LLM).

39

6.1.1 TensorFlow

Developed by Google, TensorFlow is an open-source deep learning framework

known for its flexibility and extensive community support. It’s widely used

in both research and industry for various machine learning tasks including

LLM. [wikipedia]

• TensorFlow supports high-level APIs, making it easy to develop ma-

chine learning models.

• As the input data set is massive, any mathematical calculations or

estimations can be done easily.

• TensorFlow is packed with Machine Learning APIs which are a combi-

nation of low-level and high-level.

• TensorFlow offers model training and development of models on CPU

and GPU.

• Google has incorporated several data sets and pre-trained models in

TensorFlow, including mnist, ImageNet, coco, etc

• he Machine Learning models may be run on mobile and embedded

devices with TensorFlow. Besides, Pre-trained models can also be used

for production directly.

• TensorFlow is an open-source platform, free to use and allows devel-

opers and researchers to build and deploy Machine Learning models

[tensorflow] [geeksforgeeks]

6.1.2 PyTorch

Created by Facebook’s AI Research lab, PyTorch is a library which is pop-

ular among researchers for its dynamic computation graph and ease of use.

It offers a more robust approach, making it accessible for those familiar with

Python programming.

40

• Pytorch allows flexibility in building and modifying neural networks on

the fly

• Pytorch comes with TorchScript which Enables seamless transition

from eager mode to graph mode and facilitates optimization and de-

ployment

• Pytorch provides native Support for Parallelism and simplifies training

models on multi-GPU setup.

PyTorch’s dynamic nature makes it suitable for experimentation and pro-

totyping in LLM. Researchers often prefer PyTorch for exploring new algo-

rithms and architectures for language modeling [pyt, 2016]

Keras

Keras is a high-level neural network API which runs on top of other deep

learning frameworks like TensorFlow. It’s known for its simplicity and ease

of use, making it an excellent choice for beginners and experts alike.

• Keras provides a straightforward and intuitive interface for building

and training neural networks

• Keras allows an easy assembling of standard components without deep

knowledge of underlying mathematical principles

• Keras can run on top of TensorFlow, CNTK, or Theano and providing

flexibility in implentation

• Keras offers a collection of pre-trained models; including popular lan-

guage models for quick implementation

Keras is often used for rapid prototyping and development of language

models. Its user-friendly nature allows developers to quickly build and ex-

periment with different neural network architectures for LLM [Chollet et al.,

2015]

41

Deepseed

DeepSpeed represents a comprehensive deep learning optimization library de-

signed to simplify and enhance distributed training and inference processes.

This software suite offers user-friendly tools to enable remarkable scalabil-

ity and speed for both training and inference tasks. With DeepSpeed it is

possible to:

• Train/Inference dense or sparse models with vast parameters counts

• ensuring exceptional system throughput scalable to numerous GPUs.

• Train/Inference on resource constrained GPU systems

• Achieve unprecedented low latency and high throughput for inference.

• Achieve extreme compression for an unparalleled inference latency and

model size reduction with low costs.

It is recommended to try DeepSpeed on Azure as it is the simplest and easiest

method. The recommended method to try DeepSpeed on Azure is through

AzureML recipes.[Microsoft, 2023]

6.2 Pre-trained Models for Code Related tasks

6.2.1 Starcoder

StarCoder represents an expansive language model tailored for code, de-

veloped to excel in comprehending and generating programming code across

nearly 80 programming languages, including Python. It surpasses other avail-

able code language models and fine-tuned variants, particularly in the domain

of Python and various programming languages.

One of its iterations, StarCoderBase, boasts an impressive parameter

count of 15.5 billion and a context length of 8,000, facilitating rapid large-

batch inference. It has undergone training on an extensive dataset of 1 tril-

lion tokens sourced from The Stack, which aggregates permissively licensed

GitHub repositories.

42

A distinctive strength of StarCoderBase is its superior ability to produce

valid code outputs while maintaining a notably low occurrence of insecure

completions, particularly in cases where over 95% of the generated code is

valid. It showcases proficiency in tasks like converting natural language de-

scriptions into code, documenting code, and predicting type annotations.

Furthermore, StarCoder has been trained on natural language text, ren-

dering it versatile for a range of natural language tasks, including reasoning.

It’s essential to acknowledge that while StarCoder makes strides in data

privacy, it might still generate personally identifiable information (PII). Mea-

sures have been implemented to identify and remove PII, yet tailored valida-

tion and refinement remain necessary for specific applications.

The StarCoder models are accessible to the public under a version of the

Open Responsible AI Model license that encourages practical utilization and

stimulates ongoing research and advancement in the domain.[Li et al., 2023]

6.2.2 CodeT5

CodeT5 stands as an advanced pre-trained encoder-decoder model tailored

explicitly for tasks involving code comprehension and creation. Unlike its

predecessors that treated code snippets much like natural language text,

CodeT5 capitalizes on the distinctive attributes of programming languages,

meticulously considering token types within code. It embraces a unified

architecture accommodating both code understanding and generation tasks,

thereby enabling efficient multi-task learning. This is facilitated through

an innovative identifier-aware pre-training task, which equips the model to

discern code tokens functioning as identifiers, enhancing its ability to capture

semantic nuances in code.

Fine-tuning CodeT5 for specific tasks is facilitated through task-specific

transfer learning or multi-task learning strategies. When applied to code gen-

eration tasks, CodeT5 can be adapted using its Seq2Seq framework, while

for code understanding tasks, it explores methodologies such as generating

labels as unigram target sequences or predicting them based on class label

vocabularies. This versatile model has undergone fine-tuning across a spec-

43

trum of code-related tasks, showcasing its prowess in defect detection, clone

identification, summarization, translation, and refinement.

Notably, CodeT5’s efficacy has demonstrated significant advancements in

both understanding and generation tasks spanning diverse directions like pro-

gramming language-to-natural language, natural language-to-programming

language, and even within programming languages themselves.[Wang et al.,

2021]

44

Chapter 7

Practicalities For Fine tuning

Open Source Pretrained

Models

Fine-tuning open-source pre-trained models is a powerful practice in machine

learning. The Process allows to leverage the knowledge captured in a model

trained on a large data set and adapt it to a specific task or data set in

any specific domain Pre -trained models, often trained on massive corpora,

have demonstrated remarkable proficiency in capturing patterns, relation-

ships, and representations from raw data. Fine-tuning takes advantage of

this rich knowledge which allows practitioners to tailor models for their de-

sired tasks. This chapter will introduce about practicalities to consider when

fine-tuning a pre-trained open source models.

7.0.1 Step by Step Guide in Fine tuning

Here are some practical steps to consider when fine-tuning open source pre-

trained models:

45

Selecting a Pre-trained Model

Pre-trained models are neural networks that have undergone extensive train-

ing on a large volume of data, typically for a general NLP tasks. They are

able to translate complicated linguistic elements and patterns to other rele-

vant tasks. Compared to developing a model from scratch, using pre-trained

models can help to get better results faster and with fewer data.[Linkedin].

When selecting a pre-trained model for any down stream task, there are sev-

eral factors to consider, such as the task and data.For instance for a text

classification task, a model pre-trained on a large text corpus like BERT

or GPT-2 might be a good starting point. Besides, for any code related

tasks, choosing a model which was not trained to understand programming

languages semantics may not be a good option.

Preparing Data-set

Before starting fine-tuning a pre-trained model, it’s crucial to ensure that

data-set is properly prepared. This involves several steps to clean and struc-

ture the data so that it can effectively be used for training the model. The

general steps include handling missing values, noise removal, removing du-

plicates etc. Before using data in a model, the data needs to be processed

into an acceptable format for the desired model. A model does not under-

stand raw text, images or audio.Therefore, the inputs need to be changed

into numbers and assembled into tensors. The primary tool for processing

textual data is a tokenizer.A tokenizer works by splitting text into tokens ac-

cording to a set of rules. The tokens are converted into numbers and used to

build tensors as input. When using a pre-trained model, it’s important to use

the associated pret-rained tokenizer which ensures text is split the same way

as the pretraining corpus, and uses the same corresponding tokens-to-index

(known as vocab) during pre-training.A pretrained tokenizer can be loaded

with AutoTokenizer.from pretrained("bert-base-cased") as below :

46

1 from transformers import AutoTokenizer

2

3 tokenizer = AutoTokenizer.from_pretrained("bert -base -cased")

When processing a batch of sentences, they do not always have the same

length. Tensors, the model’s input, need to have a consistent shape, hence

this is a difficulty. By including a unique padding token, padding serves as

a way for guaranteeing that tensors are rectangular.

Furthermore, sometimes a sequence can be way too long for a model to

handle. In that case, truncation is necessary for the sequence to have a

shorter length.[?]

Hyperparameter Tuning

Hyper parameters are parameters that are set before the training process

begins and control various aspects of the training process itself. They are

not learned during training but rather set by the user.[Sathishkumar et al.,

2023] Examples of hyper-parameters include learning rate, batch size, num-

ber of layers, number of hidden units, regularization strength, etc. Hyper

parameter tuning involves selecting the best values for these parameters to

achieve the best performance on the validation set.

Selecting the right set of hyperparameters is crucial for model’s performance

and accuracy. Unfortunately, there are no set rules on which hyperparame-

ters work best nor their optimal or default values. We need to experiment

to find the optimum hyperparameter set. This activity is known as hyper-

parameter tuning or hyperparameter optimization.

Hyperparameters can effect model structure, function, and performance. Hy-

perparameter tuning allows to tweak model performance for optimal results.

This process is an essential part of machine learning, and choosing appropri-

ate hyperparameter values is crucial for success.

For example,For the learning rate of the model as a hyperparameter, if the

value is too high, the model may converge too quickly with suboptimal re-

47

sults. Again, if the rate is too low, training takes too long and results may not

converge. An appropriate and balanced choice of hyperparameters results in

accurate models and excellent model performance [Amazon Web Services]

Training

A pretrained model can be fine tuned with a deep learning framework of the

developer’s choice.The provided content is a guide through training transformer-

based models using PyTorch and TensorFlow:

PyTorch

To commence the training process, an appropriate transformer model is

loaded using the AutoModelForSequenceClassification module. This module

enables the seamless integration of pre-trained transformer architectures tai-

lored for sequence classification tasks.

A TrainingArguments object is constructed to observe the training pro-

cess. This object encompasses a range of hyperparameters and training op-

tions that significantly impact the model’s convergence and performance. By

judiciously configuring these settings, developers can tailor the training pro-

cess to the specific demands of task.

The essential elements of the training process are included in a Trainer

object that is initialized. This object comprises the initialized model, the

previously defined TrainingArguments, the training and evaluation datasets,

and the metrics calculation function.

The actual model training is initiated using the train() method of the

Trainer object. This step iteratively updates the model’s parameters using

the training data, iteratively refining its ability to make accurate predic-

tions. By incorporating the hyperparameters, metrics, and training data,

the model’s adaptation process is managed in a controlled and optimized

48

manner.

TensorFlow

The initial phase of model training entails loading a data set.The Auto-

Tokenizer function facilitates the generation of tokenizers tailored to specific

transformer architectures. Tokenization is a pivotal preprocessing step that

converts raw text data into manageable units, a prerequisite for model un-

derstanding.The utilization of NumPy arrays ensures efficient handling of

tokenized data and labels.

Within the TensorFlow system, the TFAutoModelForSequenceClas-

sification function seamlessly loads a pre-trained transformer model. Model

compilation involves specifying optimization strategies, including parameters

such as learning rates, enabling the network to adapt to the nuances of the

provided data.

With tokenized data and labels prepared and the model compiled, the

training phase begins. This pivotal stage is facilitated through themodel.fit()

function in TensorFlow. This process checks for the gradual achievement of

domain-specific knowledge which results in enhancing the model’s predictive

abilities.

As the scale of datasets grows, considerations regarding memory effi-

ciency and computational performance become difficult. In such scenarios,

the adoption of tf.data.Dataset within TensorFlow offers a good solution.

[?]

Native Pytorch

In some scenarios, researchers and practitioners may prefer a more tailored

training loop for fine-tuning transformers models.Before starting on fine-

tuning, it’s advisable to optimize memory usage. This can be achieved by

liberating resources, such as by removing previously loaded models, using

49

the following code snippet:

1 del model

2 del pytorch_model

3 del trainer

4 torch.cuda.empty_cache ()

This process also comprises in tokenization, data loader, model initial-

ization , optimization strategy etc. In this case, the AdamW optimizer, is

utilized for fine-tuning. The device (GPU or CPU) is specified for training,

ensuring optimal hardware usage. Tracking training progress is essential and

the tqdm library provides a helpful progress bar.

Evaluation

An evaluation metric is defined using the evaluate library. For instance,

accuracy can be chosen as a suitable metric to gauge the model’s classification

performance. This chosen metric serves as an indicator of the model’s ability

to correctly classify input sequences, contributing to an objective assessment

of the training outcomes.

The compute metrics function is implemented to derive meaningful mean-

ing from the predictions made during evaluation. This function processes the

model’s predictions, compares them with the ground truth labels, and cal-

culates the specified evaluation metric. The accuracy, calculated using this

function, offers insights into the model’s effectiveness in producing correct

classifications.

7.0.2 Tips for Fine tuning

Using a Smaller learning rate

When fine-tuning a pre-trained model, it is essential to use a smaller learning

rate than the one used during pre-training. This is because the pre-trained

model has already learned useful features, and we do not want to overwrite

them with random initialization.

50

Data augmentation

Data augmentation is a technique used to increase the size of the training

dataset by applying transformations such as rotation, scaling, and flipping.

Data augmentation can help the model generalize better by exposing it to

more variations of the input data

Freeze the Early Layers

The early layers of a pre-trained model are responsible for learning low-level

features such as edges and corners. These features are useful for many tasks,

and we do not want to overwrite them during fine-tuning. Therefore, it is

recommended to freeze the early layers of the pre-trained model and only

fine-tune the later layers

Regularization

Regularization is a technique used to prevent overfitting. Overfitting occurs

when the model performs well on the training set but poorly on the test set.

Regularization techniques such as L1 and L2 regularization can be used to

prevent overfitting during fine-tuning.

7.0.3 Challenges and Issuses

Dataset Acquisiton

One of the primary challenges researchers and practitioners can face when

fine-tuning pretrained models is acquiring or creating datasets that are tai-

lored to their specific task. While pretrained models are versatile, they still

require domain-specific and task-specific data for optimal performance. Ac-

quiring such datasets can be a complex task, particularly for niche or emerg-

ing fields where labeled data might be scarce. Moreover, curating datasets

that are representative and balanced poses its own set of challenges.

51

Documentation and Guidelines

The availability and quality of documentation play a pivotal role in the suc-

cess of any implementation. While libraries like Hugging Face’s Transform-

ers have greatly simplified the process of fine-tuning, the documentation and

guideline for fine-tuning pre-trained models can sometimes be inadequate or

ambiguous. Clear and comprehensive documentation is essential for guiding

users through the intricate process of selecting the right model, configuring

hyper parameters, pre-processing data, and interpreting results. Insufficient

documentation can lead to confusion, misinterpretations, and ultimately sub

optimal outcomes.

Lack of Implementation Examples

Learning from examples is an effective way of skill development, and the

realm of fine-tuning pre-trained models is no different. Insufficient illustrative

examples that cover diverse tasks can hinder users’ ability to effectively fine-

tune models. Researchers often struggle with translating theoretical knowl-

edge into practical implementations, and a dearth of real-world examples

enhances this challenge.

The NLP community may collaborate to create common datasets that are tai-

lored to particular objectives. Open-source platforms that encourage dataset

contributions and crowdsourcing can help alleviate the scarcity of task-specific

data.

52

Chapter 8

Optimizing LLMs for Software

Company Use

In the dynamic landscape of software development, LLMs have emerged as

transformative tools with much potential. However, as the scale and com-

plexity of LLMs grow, the challenge lies in effectively deploying them within

resource-limited environments. This chapter delves into innovative strategies

to tailor LLMs for the software industry. We explore methods to ensure fair-

ness, enhance interpretability, easier collaboration, and boost performance

8.1 Model Compression and Pruning for Ef-

ficient Deployment

Model compression techniques offer a promising avenue for addressing the

challenges posed by the size and complexity of large language models (LLMs)

when deploying them in resource-constrained environment[Magister et al.,

2023]. By implementing model compression and pruning, software compa-

nies can reduce the size, memory usage, and computational costs of LLMs,

enabling more efficient deployment in resource-constrained environments.

One such technique, known as pruning, presents an effective strategy to

streamline LLMs. Pruning involves the removal of unnecessary or redundant

components, like neurons, channels, or entire layers, while maintaining the

53

model’s overall architecture. An advanced variant, structured pruning, takes

a rule-based approach to eliminate entire structural components of the model,

all the while preserving the global network structure.[Zhu et al., 2023].

A noteworthy example of structured pruning is the LLM-Pruner, which

stands as a testament to the innovation in this field. This technique amal-

gamates a dependency detection algorithm with an efficient importance esti-

mation method, resulting in a finely tuned pruning process.[Ma et al., 2023].

By integrating model compression and pruning techniques, software com-

panies stand to achieve significant reductions in LLM size, memory utiliza-

tion, and computational expenses. This, in turn, paves the way for the

deployment of LLMs in resource-constrained environments with enhanced

efficiency, marking a substantial advancement in the realm of software engi-

neering.

8.2 Quantization and Distillation for Resource-

Constrained Environments

Quantization is a model compression technique that converts floating-point

numbers to integers or other discrete forms, reducing storage requirements

and computational complexity .Quantization can be applied during the train-

ing process (quantization-aware training), fine-tuning of a pretrained model

(quantization-aware fine-tuning), or after the model has completed training

(post-training quantization)[Gholami et al., 2021]. Recent research has ex-

plored quantization methods for large language models (LLMs), achieving

substantial model compression with minimal accuracy degradation.

Knowledge distillation is another technique used for model compression,

where a smaller student model is trained to mimic the behavior of a larger

teacher model .Layer-by-layer knowledge distillation, optimized quantization

support, and hardware-friendly quantization schemes have been proposed to

reduce weight and activation precision in LLMs [Zhu et al., 2023].

Techniques, such as GPTQ [Frantar et al., 2023] and ZeroQuant [Yao

et al., 2022], aim to maintain accuracy while reducing the bit precision of

54

LLMs, making them suitable for resource-constrained environments .

8.2.1 QLORA and LORA:

QLORA is a quantization-aware fine-tuning technique for large language

models (LLMs) that aims to conserve memory without compromising per-

formance. It introduces innovative concepts like a new data type, double

quantization, and paged optimizers to achieve state-of-the-art results on the

Vicuna benchmark[Dettmers et al., 2023][Zhu et al., 2023].

LORA, on the other hand, is a low-rank factorization technique for LLMs

that aims to approximate a weight matrix by decomposing it into smaller ma-

trices with significantly lower dimensions. LORA and its variants have been

widely adopted in the field of LLM research to fine-tune models efficiently

[Hu et al., 2021].

8.3 Monitoring andMaintaining LLMs in Soft-

ware Development Lifecycle

LLMs have versatile applications in software maintenance, including bug

prediction, program repair, code review, debugging, and logging.

LLMs like BERT, CodeBERT, CodeT5, Codex, PLBART, T5 have shown

remarkable capabilities in understanding programming languages and gener-

ating syntactically correct and contextually relevant code.

Integrating Large Language Models (LLMs) with emerging input modal-

ities, such as spoken language, diagrams, and multimodal inputs, presents

an opportunity to significantly broaden their capabilities in comprehending

and handling a wide array of user needs. By incorporating these new input

forms, LLMs can transcend textual limitations, enabling more effective com-

munication and interaction across various domains and contexts [Hou et al.,

2023].

Expanding the use of LLMs to under-explored areas like software require-

ments, design, and management can revolutionize how projects are managed.

55

Efficient deployment of Large Language Models (LLMs) necessitates eval-

uating their inference efficiency through accuracy, zero-shot ability, and in-

ference scaling laws.

However, ensuring their real-world applicability demands ongoing moni-

toring and maintenance throughout the software development lifecycle. This

entails adapting to evolving data distributions, detecting and correcting er-

rors, mitigating biases, optimizing performance, and staying updated with

LLM versions and updates. By integrating these measures, LLMs can con-

sistently provide accurate, unbiased, and efficient responses in dynamic real-

world environments. [Zhu et al., 2023]

56

Chapter 9

Future Trends and Research

Directions

The field of large language models has experienced impressive development

and innovation, opening the way for exciting next trends and research direc-

tions that are ready to reshape the software industry’s landscape. LLMs have

the potential to transform a number of facets of software engineering as they

continue to develop. This section examines the significant effects of these

developments, emphasizing the areas that need the most improvement, the

difficulties that still lie ahead, and the moral principles that must underpin

their incorporation into software engineering techniques.

9.0.1 Challenges in LLM Development for Software

Companies

• To learn language patterns, large language models need a vast quan-

tity of training data, and the results heavily depend on the training

data. LLMs will increase any problems and biases or mistakes present

in the training data, potentially resulting in models that behave with

prejudice, such as providing biased recommendations. This means that

errors might spread and that the performance and generalizability of

the model can be greatly affected by the quality and representativeness

of the training data. [Ozkaya, 2023]. For instance, language mod-

57

els that are applied to recommend code patterns have been found to

carry security flaws forward which creates risks in not only generating

buggy code, but also perpetuating immature implementation practices

in software developers.[Perry et al., 2022]

• The explainability of deep learning and machine learning models is

a significant topic of concern within the field of artificial intelligence.

This concern is particularly relevant when dealing with complex models

like Large Language Models (LLMs). Explainability refers to the abil-

ity to understand and interpret how these models make their decisions

and predictions.In various AI applications, especially those involving

business decisions, it’s crucial to be able to explain why a model is

suggesting a certain recommendation or making a particular decision.

[Tantithamthavorn et al., 2023]

Understanding an LLM’s decision-making process can help developers

diagnose issues and improve model performance.Explanations can re-

veal whether the model is making mistakes due to poor training data

or other issues.

• Large Language Models (LLMs) are built using content created by

various individuals, which might include private information and the

unique creative styles of content creators. Training these models us-

ing patterns in the generated output raises concerns about plagiarism.

While some content is repetitive and generating it accurately can en-

hance efficiency, differentiating content, including code, where individ-

ual contributions are important becomes challenging. [Ozkaya, 2023]

Another issue that needs to be addressed is the gap in collaboration between

Software Engineering people and Machine learning scientist.

58

9.1 Future Directions of LLM and Software

Engineering

• Future research can focus on creating Large Language Model (LLM)

architectures that are specifically designed to address software engineer-

ing tasks. These tailored architectures can take into account the unique

characteristics of coding languages, software design patterns, and de-

velopment practices. By fine-tuning LLMs for software engineering,

researchers can enhance their ability to generate accurate and con-

textually relevant code, documentation, and recommendations. [Hou

et al., 2023]

• Incorporating domain-specific knowledge into LLMs can greatly en-

hance their performance in software engineering tasks. Future work can

explore techniques to effectively integrate software engineering princi-

ples, patterns, and best practices into LLMs’ training data and fine-

tuning processes. This integration can ensure that LLM-generated con-

tent aligns with established coding standards and practices within the

software development community. [Hou et al., 2023]

• LLMs are often seen as black-box models due to their complex in-

ternal workings. Enhancing the interpretability and explainability of

LLMs is crucial for building trust and adoption in software engineer-

ing tasks.[Tantithamthavorn et al., 2023] Researchers can explore tech-

niques to generate human-readable explanations for LLM-generated

outputs, such as code explanations or reasons behind suggested code

changes. This empowers developers to understand and trust the model’s

recommendations.

• The collaboration between LLMs and human developers holds im-

mense potential for improving software engineering processes. Future

research can focus on developing interactive interfaces and tools that

enable seamless integration between LLMs and developers. These tools

can allow developers to interact with LLM-generated suggestions, re-

59

fine them, and incorporate their domain expertise, resulting in higher-

quality code and documentation

9.2 Truthfulness of LLMs

The assurance of aligning large language models (LLMs) with human inten-

tions is paramount prior to their deployment in real-world contexts. The

seven principal dimensions of LLM trustworthiness can be named as: reli-

ability, safety, fairness, resilience against misuse, explainability and logical

inference, adherence to societal norms, and robustness. Models exhibiting

higher alignment with human intentions often demonstrate superior overall

trustworthiness, though the effectiveness of alignment can diverge among

various trustworthiness facets. It is worth noting that LLMs possess the ca-

pacity to fabricate and generate content that lacks connections to existing

knowledge. Consequently, it becomes imperative for LLMs to uphold neutral-

ity when addressing matters pertaining to political ideologies, public figures,

events, or products. The credibility of an LLM hinges on its capability to

elucidate its decision-making rationale and offer transparency into the pro-

cess by which it generates content. This multifaceted approach underscores

the importance of addressing alignment, accountability, and transparency in

order to foster trust in the capabilities and outputs of LLMs.[Liu et al., 2023]

9.3 Ethical AI and Responsible LLM Devel-

opment in Software Industry

Ethical considerations hold significant importance when it comes to the devel-

opment and deployment of Large Language Models (LLMs) in the software

industry. The training data used to teach these models can carry biases,

and if not addressed, these biases can manifest in the outputs generated by

LLMs[Ozkaya, 2023]. As a response to this, it has become essential to curate

training datasets that are transparent, diverse, and well-balanced, ensuring

that the resulting LLM outputs are free from undue biases and discrimina-

60

tion.

Responsible LLM development goes beyond addressing biases. It involves

tackling challenges inherent to these models. For instance, the sheer size of

LLMs can present deployment challenges, as they require substantial com-

putational resources and memory. Moreover, LLMs often depend heavily on

the quality and quantity of training data. Ensuring a consistent and reliable

supply of relevant data is crucial for optimal performance.

In response to challenges, ongoing efforts are directed towards refining

LLMs. One strategy involves reducing their sizes to improve efficiency and

practical usability. Techniques like genetic algorithms are being explored to

compress LLMs without compromising their performance.[Hou et al., 2023]

As LLMs find their place in various software engineering tasks, it’s vital

to consider the resources they demand. Storage, memory, and computational

requirements must be carefully managed to ensure smooth integration. Or-

ganizations should strike a balance between the benefits of LLM utilization

and the resources allocated to accommodate their usage effectively.

61

Chapter 10

Conclusion

At this point it is time to look back to the objective of the study and com-

pare the objective to our findings. This chapter will summarize the findings

from the whole study and recommend some healthy practice ideas to the

practitioners and the researchers.

10.1 Summary of Key Findings for Software

Companies

As outlined in the previous chapters, the versatile applications of LLMs in

software development are evident across automated code review, bug detec-

tion, code completion, suggestion, software documentation generation, and

customer support chatbots. The integration of LLMs in software industry

can offer transformative potential, enhancing code quality, and enabling more

efficient customer interactions. Besides these, the development of LLM also

asks for knowldege and experience from software domain for their best results

and performances.

However,these advantages are accompanied by a series of considerations

and challenges. The meticulous selection of LLM architectures and tech-

niques tailored to software engineering tasks is essential to ensuring optimal

performance.

As these approaches are data driven approach, the ultimate results of

62

depends on the availability and quality of the data. We can not but ac-

cept the fact of scarcity of task specific labelled data set in the software

domain.Moreover the careful management of data preparation, training tech-

niques, evaluation metrics, and deployment strategies emerges as a critical

factor in achieving successful LLM integration.Ethical concerns related to bi-

ases in training data and fairness metrics underscore the need for responsible

LLM development.

As we peer into the future, the significance of model optimization for effi-

cient deployment, exploration of edge device deployment, and the imperative

to maintain LLMs throughout the software development lifecycle become in-

creasingly apparent. The synthesis of these findings presents a roadmap

for software companies, guiding them toward informed decisions and best

practices as they navigate the realm of LLMs, fostering innovation while up-

holding ethical standards and achieving sustainable success in the evolving

software landscape.

10.2 Recommendations for LLM Practition-

ers in Software Development

Training Language Models (LLMs) on well-curated and diverse datasets is

crucial to reduce biases and improve their performance in software engineer-

ing tasks. Biases can emerge from biased training data, which can lead to

unfair or unrepresentative outcomes. To mitigate this, training data should

be carefully selected, and potential biases should be identified and rectified.

[Hou et al., 2023]

The deployment of LLMs in software engineering raises important ethical

considerations. LLM-generated outputs should be thoroughly reviewed to

ensure they are fair, unbiased, and align with ethical guidelines. It’s crucial

to address issues related to fairness, transparency, and accountability in the

deployment of LLMs. [Liu et al., 2023]

Developing LLM architectures tailored specifically for software engineer-

ing tasks can significantly enhance their effectiveness and efficiency. By un-

63

derstanding the unique requirements of software engineering, models can be

optimized to generate more accurate and contextually relevant code, docu-

mentation, and other software related tasks.

Interpretability and explainability are crucial aspects, especially in critical

domains like software engineering. Techniques should be explored to make

LLMs more interpretable.

Creating interactive interfaces and tools that enable seamless interaction

between LLMs and human developers is essential. Such interfaces can help

developers integrate LLMs into their workflow, receive real-time suggestions,

and provide feedback to improve the model’s performance.

The performance of LLMs should be continuously evaluated and opti-

mized. Factors such as model size, deployment challenges, and data depen-

dencies should be considered. Regular model updates can ensure that the

LLM remains effective and aligned with the evolving needs of the software

engineering field.

Keeping up-to-date with the latest research and advancements in LLMs

is crucial. The field of machine learning, including LLMs, is rapidly evolv-

ing. Staying informed about new techniques and approaches can help in

harnessing the full potential of LLMs for optimizing software development

processes.[Hou et al., 2023]

10.3 Final Thoughts

The emergence of Large Language Models (LLMs) has brought about a fun-

damental shift in the field of Software Engineering (SE). These advanced

models possess remarkable capabilities in handling complex and extensive

language-related tasks, promising to reshape SE practices in a substantial

way. In this comprehensive study, we delve into the current landscape of

how LLMs are being integrated into Software engineering.

Our exploration begins with an examination of the diverse LLMs that

have found application in SE activities. We aim to unravel their unique

characteristics and versatile uses within the domain.

Moving forward, we take a deep dive into the crucial procedures associated

64

with data collection, pre-processing, and utilization of LLMs. We emphasize

the pivotal role of high-quality datasets that have undergone meticulous cu-

ration. .

Furthermore, our review sheds light on specific SE tasks that have expe-

rienced significant improvements thanks to the incorporation of LLMs. We

highlight the tangible benefits and practical advancements that have been

achieved through the integration of these models. From code generation to

natural language understanding in SE, LLMs have demonstrated their ability

to enhance the efficiency and effectiveness of various processes.

Finally, we look into the several methods used to evaluate and improve

LLM performance for SE tasks.Additionally, we highlight the current diffi-

culties and introduce a road map that identifies interesting future directions.

For researchers and engineers investigating the application of LLMs in soft-

ware engineering, this thorough overview offers crucial insights.

65

Bibliography

Pytorch: An open source machine learning framework. https://pytorch.

org/, 2016.

Microsoft azure machine learning. https://azure.microsoft.com/en-us/

products/machine-learning#x11b6ca2f2d3f43b098fc9b9aecdf5240,

2023.

Microsoft azure machine learning. https://cloud.google.com/

ai-platform/docs/technical-overview, A.

A. Abbas. https://www.techopedia.com/5-ways-llms-can-empower-software-

engineering.

T. Afonja. Model evaluation i: Precision and re-

call. 2017. URL https://towardsdatascience.com/

model-evaluation-i-precision-and-recall-166ddb257c7b.

AIMultiple. Large language model training: Costs, times, re-

sources, 2023. URL https://research.aimultiple.com/

large-language-model-training/.

M. Alqarni and A. Azim. Low Level Source Code Vulnerability De-

tection Using Advanced BERT Language Model. Proceedings of

the Canadian Conference on Artificial Intelligence, may 27 2022.

https://caiac.pubpub.org/pub/gdhb8oq4.

I. Amazon Web Services. What is hyperparameter tuning? URL https:

//aws.amazon.com/what-is/hyperparameter-tuning/?nc1=h_ls.

66

S. Arakelyan, R. J. Das, Y. Mao, and X. Ren. Exploring distributional shifts

in large language models for code analysis, 2023.

builtin. https://builtin.com/data-science/transfer-learning.

M. Chalokia. https://www.linkedin.com/pulse/time-based-splitting-

determining-train-test-data-come-manraj-chalokia/.

X. Chen, M. Lin, N. Schärli, and D. Zhou. Teaching large language models

to self-debug, 2023.

F. Chollet et al. Keras. https://keras.io, 2015.

M. Ciniselli, N. Cooper, L. Pascarella, A. Mastropaolo, E. Aghajani,

D. Poshyvanyk, M. Di Penta, and G. Bavota. An empirical study on

the usage of transformer models for code completion, 08 2021.

J. L. S. W. E. W. F. S. R. Z. W. Y. L. Z. Daniel Fried, Armen Aghajanyan

and M. Lewis. A systematic evaluation of large language models of code.

Incoder: A generative model for code infilling and synthesis. CoRR,, 2022.

T. Dettmers, A. Pagnoni, A. Holtzman, and L. Zettlemoyer. Qlora: Efficient

finetuning of quantized llms, 2023.

Z. Du, Y. Qian, X. Liu, M. Ding, J. Qiu, Z. Yang, and J. Tang. Glm: General

language model pretraining with autoregressive blank infilling, 2022.

D. C. Eliane Maria, De Bortoli Fávero. Bertse : Apre −
trainedlanguagerepresentationmodelforsoftwareengineering.18/9/2020.

G. N. Frank F. Xu, Uri Alon and V. J. Hellendoorn. A systematic evaluation of

large language models of code. 6th ACM SIGPLAN International Symposium

on Machine Programming, San Diego, CA, USA, pages 38–45, Online, 2022.

E. Frantar, S. Ashkboos, T. Hoefler, and D. Alistarh. Gptq: Accurate post-

training quantization for generative pre-trained transformers, 2023.

J. Ge, S. Tang, J. Fan, and C. Jin. On the provable advantage of unsupervised

pretraining, 2023.

67

geeksforgeeks. https://www.geeksforgeeks.org/why-tensorflow-is-so-popular-

tensorflow-features/.

A. Gholami, S. Kim, Z. Dong, Z. Yao, M. W. Mahoney, and K. Keutzer. A

survey of quantization methods for efficient neural network inference, 2021.

L. Gong, J. Zhang, M. Wei, H. Zhang, and Z. Huang. What is the intended

usage context of this model? an exploratory study of pre-trained models on

various model repositories. ACM Trans. Softw. Eng. Methodol., 32(3), may

2023. ISSN 1049-331X. doi: 10.1145/3569934. URL https://doi.org/10.

1145/3569934.

P. W. O. Greg Brockman, Mira Murati. Openai api. URL https://openai.

com/blog/openai-api.

M. U. Hadi, Q. Al-Tashi, R. Qureshi, A. Muneer, M. Irfan, A. Zafar, M. Shaikh,

N. Akhtar, J. Wu, and S. Mirjalili. Large language models: A comprehensive

survey of its applications, challenges, limitations, and future prospects, 2023.

D. Hendrycks, K. Lee, and M. Mazeika. Using pre-training can improve model

robustness and uncertainty. In K. Chaudhuri and R. Salakhutdinov, edi-

tors, Proceedings of the 36th International Conference on Machine Learn-

ing, volume 97 of Proceedings of Machine Learning Research, pages 2712–

2721. PMLR, 09–15 Jun 2019. URL https://proceedings.mlr.press/

v97/hendrycks19a.html.

X. Hou, Y. Zhao, Y. Liu, Z. Yang, K. Wang, L. Li, X. Luo, D. Lo, J. Grundy,

and H. Wang. Large language models for software engineering: A systematic

literature review, 2023.

E. J. Hu, Y. Shen, P. Wallis, Z. Allen-Zhu, Y. Li, S. Wang, L. Wang, and

W. Chen. Lora: Low-rank adaptation of large language models, 2021.

HuggingFace. https://huggingface.co/models. a.

HuggingFace. Summary of the models, b. URL https://huggingface.co/

transformers/v3.1.0/model_summary.html#autoencoding-models.

68

ibm. https://www.ibm.com/topics/supervised-learning.

X. Jiang, Y. Dong, L. Wang, Z. Fang, Q. Shang, G. Li, Z. Jin, and W. Jiao.

Self-planning code generation with large language models, 2023.

B. Kou, M. Chen, and T. Zhang. Automated summarization of stack overflow

posts, 2023.

D. Li, Y. Shen, R. Jin, Y. Mao, K. Wang, and W. Chen. Generation-augmented

query expansion for code retrieval, 2022.

R. Li, L. B. Allal, Y. Zi, N. Muennighoff, D. Kocetkov, C. Mou, M. Marone,

C. Akiki, J. Li, J. Chim, Q. Liu, E. Zheltonozhskii, T. Y. Zhuo, T. Wang,

O. Dehaene, M. Davaadorj, J. Lamy-Poirier, J. Monteiro, O. Shliazhko,

N. Gontier, N. Meade, A. Zebaze, M.-H. Yee, L. K. Umapathi, J. Zhu, B. Lip-

kin, M. Oblokulov, Z. Wang, R. Murthy, J. Stillerman, S. S. Patel, D. Ab-

ulkhanov, M. Zocca, M. Dey, Z. Zhang, N. Fahmy, U. Bhattacharyya, W. Yu,

S. Singh, S. Luccioni, P. Villegas, M. Kunakov, F. Zhdanov, M. Romero,

T. Lee, N. Timor, J. Ding, C. Schlesinger, H. Schoelkopf, J. Ebert, T. Dao,

M. Mishra, A. Gu, J. Robinson, C. J. Anderson, B. Dolan-Gavitt, D. Contrac-

tor, S. Reddy, D. Fried, D. Bahdanau, Y. Jernite, C. M. Ferrandis, S. Hughes,

T. Wolf, A. Guha, L. von Werra, and H. de Vries. Starcoder: may the source

be with you!, 2023.

Linkedin. https://www.linkedin.com/advice/0/how-do-you-use-fine-tune-pre-

trained.

Y. Liu, Y. Yao, J.-F. Ton, X. Zhang, R. Guo, H. Cheng, Y. Klochkov, M. F.

Taufiq, and H. Li. Trustworthy llms: a survey and guideline for evaluating

large language models’ alignment, 2023.

ludwig. https://ludwig.ai/latest/configuration/preprocessing/.

X. Ma, G. Fang, and X. Wang. Llm-pruner: On the structural pruning of large

language models, 2023.

L. C. Magister, J. Mallinson, J. Adamek, E. Malmi, and A. Severyn. Teaching

small language models to reason, 2023.

69

A. Mastropaolo, N. Cooper, D. Nader, S. Scalabrino, D. Poshyvanyk,

R. Oliveto, and G. Bavota. Using transfer learning for code-related tasks.

IEEE Transactions on Software Engineering, PP:1–20, 01 2022. doi: 10.

1109/TSE.2022.3183297.

medium. https://medium.com/data-science-365/random-vs-stratified-splits-

5d3d528d445b.

Microsoft. Microsoft DeepSpeed. https://github.com/microsoft/

deepspeed, 2023.

nltk. https://www.nltk.org/.

nvidia. https://blogs.nvidia.com/blog/2022/03/25/what-is-a-transformer-

model/.

OpenAI. https://openai.com/blog/customizing-gpt-3.

I. Ozkaya. Application of large language models to software engineering tasks:

Opportunities, risks, and implications. IEEE Software, 40(3):4–8, 2023. doi:

10.1109/MS.2023.3248401.

I. Ozkaya. Application of large language models to software engineering tasks:

Opportunities, risks, and implications. IEEE Software, 40, no. 3,:4–8, May-

June 2023.

N. Perry, M. Srivastava, D. Kumar, and D. Boneh. Do users write more insecure

code with ai assistants?, 2022.

G. Recchia. Teaching autoregressive language models complex tasks by demon-

stration, 2021.

K. I. Roumeliotis and N. D. Tselikas. Chatgpt and open-ai models: A prelim-

inary review. Future Internet, 15(6):192, May 2023. ISSN 1999-5903. doi:

10.3390/fi15060192. URL http://dx.doi.org/10.3390/fi15060192.

Ruth Brooks. The role of natural language processing in AI. https://online.

york.ac.uk/the-role-of-natural-language-processing-in-ai/#:~:

70

text=Natural%20language%20processing%20(NLP)%20is,a%20lot%20of%

20unstructured%20data.

Safjan. https://safjan.com/measure-quality-of-embeddings-intrinsic-vs-

extrinsic/.

G. H. T. E. Sam Manning, Pamela Mishkin and E. Eisner4. A research agenda

for assessing the economic impacts of code generation models. 3/3/2022.

V. Sathishkumar, A. Ramu, and J. Cho. Machine learning algorithms to pre-

dict the catalytic reduction performance of eco-toxic nitrophenols and azo

dyes contaminants (invited article). Alexandria Engineering Journal, 72:

673–693, 2023. ISSN 1110-0168. doi: https://doi.org/10.1016/j.aej.2023.

04.007. URL https://www.sciencedirect.com/science/article/pii/

S1110016823002806.

M. Schäfer, S. Nadi, A. Eghbali, and F. Tip. Adaptive test generation using a

large language model, 2023.

P. W. C. L. Sid Black, Leo Gao and S. Biderman. Gpt-neo:

Large scale autoregressive language modeling with mesh-tensorflow.

https://github.com/kingoflolz/mesh-transformer-jax., 2021.

simform. https://www.simform.com/blog/completeguide-finetuning-llm/.

C. Tantithamthavorn, J. Cito, H. Hemmati, and S. Chandra. Explainable ai

for se: Challenges and future directions. IEEE Software, 40(3):29–33, 2023.

doi: 10.1109/MS.2023.3246686.

tensorflow. https://www.tensorflow.org/about.

J. Thanaki. ´python natural language processing : Leverage the power of

machine learning and deep learning to extract information from text data.

30, 2017.

V. S. J. C. C. D. A. M. P. C. T. R. R. L. M. F. J. D. S. S. P. v. P. C. M. Y.

J. J. P. C. X. T. L. S. S. G. M. D. Q. L. Thomas Wolf, Lysandre Debut and

71

A. M. Rush. Transformers: State-of-the-art natural language processing.

. In Proceedings of the 2020 Conference on Empirical Methods in Natural

Language Processing: System Demonstrations, pages 38–45, Online, 2020.

A. Tormos, D. Garcia-Gasulla, V. Gimenez-Abalos, and S. Alvarez-Napagao.

When how to transfer with transfer learning, 2022.

O. L. E. Y. URI ALON, MEITAL ZILBERSTEIN. Code2vec: Learning dis-

tributed representations of code. 30/10/2018.

S. N. P. N. U. J. J. L. G. A. N. K. L. . P. I. Vaswani, A. Attention is all you

need. neural information processing systems, 30, 5998–6008. 30, 2017.

Y. Wan, W. Zhao, H. Zhang, Y. Sui, G. Xu, and H. Jin. What do they capture?

– a structural analysis of pre-trained language models for source code, 2022.

B. Wang and A. Komatsuzaki. Gpt-j6b: A 6 billion parameter autoregressive

language model. https://github.com/kingoflolz/mesh-transformer-jax., 2021.

Y. Wang, W. Wang, S. Joty, and S. C. H. Hoi. Codet5: Identifier-aware unified

pre-trained encoder-decoder models for code understanding and generation,

2021.

wikipedia. https://en.wikipedia.org/wiki/tensorflow.

Wikipedia. Word embedding, 2023. URL https://en.wikipedia.org/wiki/

Word_embedding.

B. Wodecki. 7 language models you need to know. pages 19–36, July 2, 2022.

F. F. Xu, U. Alon, G. Neubig, and V. J. Hellendoorn. A systematic evaluation

of large language models of code, 2022.

Z. Yao, R. Y. Aminabadi, M. Zhang, X. Wu, C. Li, and Y. He. Zeroquant: Ef-

ficient and affordable post-training quantization for large-scale transformers,

2022.

72

S. Yashaswini and S. S. Shylaja. Metrics for automatic evaluation of text

from nlp models for text to scene generation. EJECE, European Journal of

Electrical Engineering and Computer Science, PP.

A. D. G. N. B. J. L. S. H. Yue Wang, Henry Hung Le.

https://blog.salesforceairesearch.com/codet5-open-code-large-language-

models/.

D. T. N. D. X. F. M. G. L. S. B. Q. T. L. D. J. M. Z. Zhangyin Feng1,

Daya Guo. Codebert: A pre-trained model for programming and natural

languages. 18/9/2020.

X. Zhu, J. Li, Y. Liu, C. Ma, and W. Wang. A survey on model compression

for large language models, 2023.

73

