Publications

Journal covers

2025


 

[126]
Y. Nemati et al., “Magneto-Photochemically Responsive Liquid Crystal Elastomer for Underwater Actuation,” ACS Applied Materials & Interfaces, vol. 17, no. 3, pp. 5316-5325, Jan 2025, doi: https://doi.org/10.1021/acsami.4c14704.

2024


 

[125]
R. Nasare, H. Guo, A. Priimagi, “Hydrogen-bonded multi-mode liquid crystal elastomer actuators,” Journal of Materials Chemistry B, vol. 13, pp. 1704-1711, Oct. 2024, doi: 10.1039/D4TB02228A.

 

[124]
Z. Deng, K. Li, A. Priimagi, H. Zeng, “Light-steerable locomotion using zero-elastic-energy modes,” Nature Materials, vol. 23, no. 12, pp. 1728-1735, Oct. 2024, doi: https://doi.org/10.1038/s41563-024-02026-4.

 

[123]
S. Vesamäki et al., “Strategies to control humidity sensitivity of azobenzene isomerisation kinetics in polymer thin films,” Communications Materials, vol. 5, no. 1, pp. 209, Oct. 2024, doi: https://doi.org/10.1038/s43246-024-00642-w.

 

[122]
L. Terenzi et al., “Engineering Lipid-Based Pop-up Conductive Interfaces with PEDOT:PSS and Light-Responsive Azopolymer Films,” Advanced Healthcare Materials, vol. 13, no. 24, pp. 2303812, Aug. 2024, doi: https://doi.org/10.1002/adhm.202303812.

 

[121]
K. Kuntze et al., “Detour to success: photoswitching via indirect excitation,” Chemical Science, vol. 15, no. 30, pp. 11684-11698, Jul. 2024, doi: 10.1039/D4SC02538E.

 

[120]
M. A. Kostiainen, A. Priimagi, J. V. I. Timonen, R. H. A. Ras, M. Sammalkorpi, M. Penttilä, O. Ikkala, and M. B. Linder, “Materials Inspired by Living Functions,” Advanced Functional Materials, vol. 34, no. 37, pp. 2402097, Mar. 2024, doi: https://doi.org/10.1002/adfm.202402097.

 

[119]
A. Priimagi, “Stronger together,” Nature Materials, vol. 23, no. 2, pp. 167–169, Feb. 2024, doi: 10.1038/s41563-023-01793-w.

 

[118]
Y. Nemati et al., “A Scalable, Incoherent‐Light‐Powered, Omnidirectional Self‐Oscillator,” Advanced Intelligent Systems, vol. 6, no. 2, p. 2300054, Feb. 2024, doi: 10.1002/aisy.202300054.

 

[117]
H. Guo, T. Ruoko, H. Zeng, and A. Priimagi, “Hydrogen‐Bonded Liquid Crystal Elastomers Combining Shape Memory Programming and Reversible Actuation,” Advanced Functional Materials, vol. 34, no. 10, p. 2312068, Mar. 2024, doi: 10.1002/adfm.202312068.

 

[116]
A. Berdin, H. T. Rekola, and A. Priimagi, “Complex Fourier Surfaces by Superposition of Multiple Gratings on Azobenzene Thin Films,” Advanced Optical Materials, vol. 12, no. 4, p. 2301597, Feb. 2024, doi: 10.1002/adom.202301597.

2023


[115]
N. P. Pinchin, H. Guo, H. Meteling, Z. Deng, A. Priimagi, and H. Shahsavan, “Liquid Crystal Networks Meet Water: It’s Complicated!,” Advanced Materials, p. 2303740, Sep. 2023, doi: 10.1002/adma.202303740.

 

[114]
M. Paatelainen et al., “Hydrogel Lasers Via Supramolecular Host–Guest Complexation,” Advanced Optical Materials, vol. 11, no. 15, p. 2300232, Aug. 2023, doi: 10.1002/adom.202300232.

 

[113]
Q. Liu et al., “Optically Controlled Construction of Three‐Dimensional Protein Arrays,” Angewandte Chemie International Edition, vol. 62, no. 28, p. e202303880, Jul. 2023, doi: 10.1002/anie.202303880.

 

[112]
K. Kuntze, J. Viljakka, M. Virkki, C.-Y. (Dennis) Huang, S. Hecht, and A. Priimagi, “Red-light photoswitching of indigos in polymer thin films,” Chemical Science, vol. 14, no. 10, pp. 2482–2488, 2023, doi: 10.1039/D2SC06790K.

 

[111]
K. Kuntze et al., “A visible-light-driven molecular motor based on barbituric acid,” Chemical Science, vol. 14, no. 32, pp. 8458–8465, 2023, doi: 10.1039/D3SC03090C.

 

[110]
A. Koivuporras, A. Mailman, H. Guo, A. Priimagi, and R. Puttreddy, “Halogen Bonding in Halothiophene Building Blocks,” Crystal Growth & Design, vol. 23, no. 12, pp. 8889–8896, Dec. 2023, doi: 10.1021/acs.cgd.3c00958.

 

[109]
H. Guo et al., “Programmable and Self‐Healable Liquid Crystal Elastomer Actuators Based on Halogen Bonding,” Angewandte Chemie International Edition, vol. 62, no. 43, p. e202309402, Oct. 2023, doi: 10.1002/anie.202309402.

 

[108]
J. Gemen et al., “Disequilibrating azobenzenes by visible-light sensitization under confinement,” Science, vol. 381, no. 6664, pp. 1357–1363, Sep. 2023, doi: 10.1126/science.adh9059.

 

[107]
A. Eklund et al., “Bright and Switchable Whiteness in Macro‐Crosslinked Hydrogels,” Advanced Optical Materials, p. 2302487, Dec. 2023, doi: 10.1002/adom.202302487.

 

[106]
K. Dradrach, M. Zmyślony, Z. Deng, A. Priimagi, J. Biggins, and P. Wasylczyk, “Light-driven peristaltic pumping by an actuating splay-bend strip,” Nature Communication, vol. 14, no. 1, p. 1877, Apr. 2023, doi: 10.1038/s41467-023-37445-5.

 

2022


[105]
Z. Deng, H. Zhang, A. Priimagi, and H. Zeng, “Light-fueled Non-reciprocal Self-oscillators for Fluidic Transportation and Coupling,” Advanced Materials, vol. 36, no. 12, p. 2209683, Dec 2022, doi: https://doi.org/10.1002/adma.202209683.

 

[104]
J. Yang, H. Zhang, A. Berdin, W. Hu, and H. Zeng, “Dandelion-Inspired, Wind-Dispersed Polymer-Assembly Controlled by Light,” Advanced Science, vol. 10, no. 7, p. 2206752, Dec 2022, doi: https://doi.org/10.1002/advs.202206752.

 

[103]
H. Zhang, H. Zeng, A. Eklund, H. Guo, A. Priimagi, and O. Ikkala, “Feedback-controlled hydrogels with homeostatic oscillations and dissipative signal transduction,” Nature Nanotechnology, vol. 17, no. 12, pp. 1303–1310, Dec. 2022, doi: 10.1038/s41565-022-01241-x.

 

[102]
Q. Yang et al., “Semi-Crystalline Rubber as a Light-Responsive, Programmable, Resilient Robotic Material,” Advanced Functional Materials, vol. 32, no. 41, p. 2206939, Oct. 2022, doi: https://doi.org/10.1002/adfm.202206939.

 

[101]
E. Taipale et al., “Protonation-induced fluorescence modulation of carbazole-based emitters,” Materials Advances, vol. 3, no. 3, pp. 1703–1712, Jan. 2022, doi: 10.1039/D1MA00438G.

 

[100]
J. Liu et al., “Photoelastic plasmonic metasurfaces with ultra-large near infrared spectral tuning,” Materials Horizons, vol. 9, no. 3, pp. 942–951, Jan. 2022, doi: 10.1039/D1MH01377G.

 

[99]
K. Kuntze et al., “Towards low-energy-light-driven bistable photoswitches: ortho-fluoroaminoazobenzenes,” Photochemical & Photobiological Sciences, vol. 21, no. 2, pp. 159–173, Feb. 2022, doi: 10.1007/s43630-021-00145-4.

 

[98]
M. Isomäki et al., “Light-Responsive Bilayer Cell Culture Platform for Reversible Cell Guidance,” Small Science, vol. 2, no. 3, p. 2100099, Mar. 2022, doi: https://doi.org/10.1002/smsc.202100099.

 

[97]
H. Guo, H. Zeng, and A. Priimagi, “Optically controlled grasping-slipping robot moving on tubular surfaces,” Multifunctional Materials, vol. 5, no. 2, p. 024001, Mar. 2022.

 

[96]
H. Guo et al., “Halogen-bonded shape memory polymers,” Nature Communications, vol. 13, no. 1, p. 7436, Dec. 2022, doi: 10.1038/s41467-022-34962-7.

 

[95]
H. Guo, A. Priimagi, and H. Zeng, “Optically Controlled Latching and Launching in Soft Actuators,” Advanced Functional Materials, vol. 32, no. 17, p. 2108919, Apr. 2022, doi: https://doi.org/10.1002/adfm.202108919.

 

[94]
D. Ghindani et al., “Humidity-Controlled Tunable Emission in a Dye-Incorporated Metal–Hydrogel–Metal Cavity,” ACS Photonics, vol. 9, no. 7, pp. 2287–2294, Jun. 2022, doi: 10.1021/acsphotonics.2c00202.

 

[93]
C. Fedele, T.-P. Ruoko, K. Kuntze, M. Virkki, and A. Priimagi, “New tricks and emerging applications from contemporary azobenzene research,” Photochemical & Photobiological Sciences, vol. 21, no. 10, pp. 1719–1734, Oct. 2022, doi: 10.1007/s43630-022-00262-8.

 

[92]
M. Cheng et al., “Light-Fueled Polymer Film Capable of Directional Crawling, Friction-Controlled Climbing, and Self-Sustained Motion on a Human Hair,” Advanced Science, vol. 9, no. 1, p. 2103090, Jan. 2022, doi: https://doi.org/10.1002/advs.202103090.

 

[91]
A. Berdin et al., “Analysis of light diffraction by azobenzene-based photoalignment layers,” Opt. Express, vol. 30, no. 16, pp. 29495–29506, Aug. 2022, doi: 10.1364/OE.464278.

 

[90]
B. Audia, C. Fedele, C. M. Tone, G. Cipparrone, and A. Priimagi, “Surface Stability of Azobenzene-Based Thin Films in Aqueous Environment: Light-Controllable Underwater Blistering,” Advanced Materials Interfaces, vol. 9, no. 9, p. 2102125, Mar. 2022, doi: https://doi.org/10.1002/admi.202102125.

2021


[89]
S. Yang et al., “Multistage Reversible Tg Photomodulation and Hardening of Hydrazone-Containing Polymers,” Journal of the American Chemical Society, vol. 143, pp. 16348–16353, Sep. 2021, doi: https://doi.org/10.1021/jacs.1c07504.

 

[88]
P. Xue et al., “Near-Infrared Light-Driven Shape-Morphing of Programmable Anisotropic Hydrogels Enabled by MXene Nanosheets,” Angewandte Chemie International Edition, vol. 57, pp. 2532–7, Jan. 2021, doi: 10.1002/ange.202014533.

 

[87]
M. Ristola et al., “Directional Growth of Human Neuronal Axons in a Microfluidic Device with Nanotopography on Azobenzene-Based Material,” Advanced Materials Interfaces, vol. 8, p. 2100048, May 2021, doi: https://doi.org/10.1002/admi.202100048.

 

[86]
P. Lv et al., “Stimulus-driven liquid metal and liquid crystal network actuators for programmable soft robotics,” Materials Horizons, vol. 8, pp. 2475–2484, Jun. 2021, doi: 10.1039/D1MH00623A.

 

[85]
K. Kuntze, J. Isokuortti, A. Siiskonen, N. Durandin, T. Laaksonen, and A. Priimagi, “Azobenzene Photoswitching with Near-Infrared Light Mediated by Molecular Oxygen,” The Journal of Physical Chemistry B, vol. 125, pp. 12568–12573, Nov. 2021, doi: https://doi.org/10.1021/acs.jpcb.1c08012.

 

[84]
J. Isokuortti et al., “Expanding excitation wavelengths for azobenzene photoswitching into the near-infrared range via endothermic triplet energy transfer,” Chemical Science, vol. 12, pp. 7504–7509, Apr. 2021, doi: 10.1039/D1SC01717A.

 

[83]
H. Daghigh Shirazi et al., “Multiscale Hierarchical Surface Patterns by Coupling Optical Patterning and Thermal Shrinkage,” ACS Applied Materials & Interfaces, vol. 13, pp. 15563–15571, Mar. 2021, doi: 10.1021/acsami.0c22436.

 

[82]
S. Chervinskii et al., “Humidity- and Temperature-Tunable Metal–Hydrogel–Metal Reflective Filters,” ACS Applied Materials & Interfaces, vol. 13, pp. 50564–50572, Oct. 2021, doi: https://doi.org/10.1021/acsami.1c15616.

 

[81]
L. Canil et al., “Halogen-Bonded Hole-Transport Material Suppresses Charge Recombination and Enhances Stability of Perovskite Solar Cells,” Advanced Energy Materials, vol. 11, p. 2101553, Aug. 2021, doi: https://doi.org/10.1002/aenm.202101553.

2020


[80]
H. Zhang, H. Zeng, A. Priimagi, and O. Ikkala, “Viewpoint: Pavlovian Materials — Functional Biomimetics Inspired by Classical Conditioning,” Advanced Materials, vol. 32, p. 1906619, May 2020, doi: 10.1002/adma.201906619.

 

[79]
H. Zeng, H. Zhang, O. Ikkala, and A. Priimagi, “Associative Learning by Classical Conditioning in Liquid Crystal Network Actuators,” Matter, vol. 2, pp. 194–206, Jan. 2020, doi: 10.1016/j.matt.2019.10.019.

 

[78]
O. M. Wani, A. P. H. J. Schenning, and A. Priimagi, “A bifacial colour-tunable system: Via combination of a cholesteric liquid crystal network and hydrogel,” Journal of Materials Chemistry C, vol. 8, pp. 10191–10196, Jul. 2020, doi: 10.1039/d0tc02189j.

 

[77]
J. Vapaavuori et al., “Effect of hydrogen-bond strength on photoresponsive properties of polymer-azobenzene complexes,” Canadian Journal of Chemistry, vol. 98, pp. 531–538, Sep. 2020, doi: 10.1139/cjc-2020-0048.

 

[76]
E. Tervola, K. N. Truong, J. S. Ward, A. Priimagi, and K. Rissanen, “Fluorescence enhancement of quinolines by protonation,” RSC Advances, vol. 10, pp. 29385–29393, Aug. 2020, doi: 10.1039/d0ra04691d.

 

[75]
J. M. Taskinen et al., “All-Optical Emission Control and Lasing in Plasmonic Lattices,” ACS Photonics, vol. 7, pp. 2850–2858, Oct. 2020, doi: 10.1021/acsphotonics.0c01099.

 

[74]
H. Shahsavan et al., “Bioinspired underwater locomotion of light-driven liquid crystal gels,” Proceedings of the National Academy of Sciences, vol. 117, pp. 5125–5133, Mar. 2020, doi: 10.1073/pnas.1917952117.

 

[73]
J. Salunke et al., “Fluorination of pyrene-based organic semiconductors enhances the performance of light emitting diodes and halide perovskite solar cells,” Organic Electronics, vol. 77, p. 105524, Feb. 2020, doi: 10.1016/j.orgel.2019.105524.

 

[72]
J. Salunke et al., “N-Substituted Phenothiazines as Environmentally Friendly Hole-Transporting Materials for Low-Cost and Highly Stable Halide Perovskite Solar Cells,” ACS Omega, vol. 5, pp. 23334–23342, Sep. 2020, doi: 10.1021/acsomega.0c03184.

 

[71]
H. Rekola, A. Berdin, C. Fedele, M. Virkki, and A. Priimagi, “Digital holographic microscopy for real-time observation of surface-relief grating formation on azobenzene-containing films,” Scientific Reports, vol. 10, p. 19642, Nov. 2020, doi: 10.1038/s41598-020-76573-6.

 

[70]
A. Priimagi and S. Hecht, “From Responsive Molecules to Interactive Materials,” Advanced Materials, vol. 32, p. 2000215, May 2020, doi: 10.1002/adma.202000215.

 

[69]
M. Lahikainen, H. Zeng, and A. Priimagi, “Design principles for non-reciprocal photomechanical actuation,” Soft Matter, vol. 16, pp. 5951–5958, Jun. 2020, doi: 10.1039/d0sm00624f.

 

[68]
M. Lahikainen, K. Kuntze, H. Zeng, S. Helantera, S. Hecht, and A. Priimagi, “Tunable Photomechanics in Diarylethene-Driven Liquid Crystal Network Actuators,” ACS Applied Materials & Interfaces, vol. 12, pp. 47939–47947, Oct. 2020, doi: 10.1021/acsami.0c12735.

 

[67]
A. S. Kuenstler, M. Lahikainen, H. Zhou, W. Xu, A. Priimagi, and R. C. Hayward, “Reconfiguring Gaussian Curvature of Hydrogel Sheets with Photoswitchable Host-Guest Interactions,” ACS Macro Letters, vol. 9, pp. 1172–1177, Aug. 2020, doi: 10.1021/acsmacrolett.0c00469.

 

[66]
C. Fedele et al., “Azobenzene-based sinusoidal surface topography drives focal adhesion confinement and guides collective migration of epithelial cells,” Scientific Reports, vol. 10, p. 15329, Dec. 2020, doi: 10.1038/s41598-020-71567-w.

 

[65]
A. Eklund, H. Zhang, H. Zeng, A. Priimagi, and O. Ikkala, “Fast Switching of Bright Whiteness in Channeled Hydrogel Networks,” Advanced Functional Materials, vol. 30, p. 2000754, Jul. 2020, doi: 10.1002/adfm.202000754.

 

[64]
Y. C. Cheng, H. C. Lu, X. Lee, H. Zeng, and A. Priimagi, “Kirigami-Based Light-Induced Shape-Morphing and Locomotion,” Advanced Materials, vol. 32, p. 1906233, Feb. 2020, doi: 10.1002/adma.201906233.

 

[63]
B. O. Asamoah et al., “Optically induced crossover from weak to strong coupling regime between surface plasmon polaritons and photochromic molecules,” Optics Express, vol. 28, p. 26509, Aug. 2020, doi: 10.1364/oe.400359.

2019


[62]
H. Zhang, H. Zeng, A. Priimagi, and O. Ikkala, “Programmable responsive hydrogels inspired by classical conditioning algorithm,” Nature Communications, vol. 10, p. 3267, Dec. 2019, doi: 10.1038/s41467-019-11260-3.

 

[61]
H. Zhang et al., “Thionation Enhances the Performance of Polymeric Dopant-Free Hole-Transporting Materials for Perovskite Solar Cells,” Advanced Materials Interfaces, vol. 6, p. 1901036, Sep. 2019, doi: 10.1002/admi.201901036.

 

[60]
H. Zeng, M. Lahikainen, O. M. Wani, A. Berdin, and A. Priimagi, “Liquid Crystal Polymer Networks and Elastomers for Light‐Fueled Robotics,” in Photoactive Functional Soft Materials, E. Q. Li, Ed., Wiley, 2019, pp. 197–226. doi: 10.1002/9783527816774.ch6.

 

[59]
H. Zeng et al., “Light-fuelled freestyle self-oscillators,” Nature Communications, vol. 10, p. 5057, Dec. 2019, doi: 10.1038/s41467-019-13077-6.

 

[58]
O. M. Wani, R. Verpaalen, H. Zeng, A. Priimagi, and A. P. H. J. Schenning, “An Artificial Nocturnal Flower via Humidity-Gated Photoactuation in Liquid Crystal Networks,” Advanced Materials, vol. 31, p. 1805985, Jan. 2019, doi: 10.1002/adma.201805985.

 

[57]
J. Vapaavuori, J. Grosrenaud, A. Siiskonen, A. Priimagi, C. Pellerin, and C. G. Bazuin, “Photocontrol of Supramolecular Azo-Containing Block Copolymer Thin Films during Dip-Coating: Toward Nanoscale Patterned Coatings,” ACS Applied Nano Materials, vol. 2, pp. 3526–3537, Jun. 2019, doi: 10.1021/acsanm.9b00496.

 

[56]
M. Shin et al., “Low-dimensional formamidinium lead perovskite architectures via controllable solvent intercalation,” Journal of Materials Chemistry C, vol. 7, pp. 3945–3951, Mar. 2019, doi: 10.1039/c9tc00379g.

 

[55]
J. Salunke et al., “Phenothiazine-Based Hole-Transporting Materials toward Eco-friendly Perovskite Solar Cells,” ACS Applied Energy Materials, vol. 2, pp. 3021–3027, May 2019, doi: 10.1021/acsaem.9b00408.

 

[54]
M. Saccone et al., “Photoresponsive Halogen-Bonded Liquid Crystals: The Role of Aromatic Fluorine Substitution,” Chemistry of Materials, vol. 31, pp. 462–470, Jan. 2019, doi: 10.1021/acs.chemmater.8b04197.

 

[53]
M. Saccone et al., “Mesogens with Aggregation-Induced Emission Formed by Hydrogen Bonding,” ACS Materials Letters, vol. 1, pp. 589–593, Nov. 2019, doi: 10.1021/acsmaterialslett.9b00371.

 

[52]
M. Liu et al., “Halide Perovskite Nanocrystals for Next-Generation Optoelectronics,” Small, vol. 15, p. 1900801, Jul. 2019, doi: 10.1002/smll.201900801.

 

[51]
V. Y. Chang, C. Fedele, A. Priimagi, A. Shishido, and C. J. Barrett, “Photoreversible Soft Azo Dye Materials: Toward Optical Control of Bio-Interfaces,” Advanced Optical Materials, vol. 7, p. 1900091, Aug. 2019, doi: 10.1002/adom.201900091.

2018


[50]
H. Zeng, P. Wasylczyk, D. S. Wiersma, and A. Priimagi, “Light Robots: Bridging the Gap between Microrobotics and Photomechanics in Soft Materials,” Advanced Materials, vol. 30, p. 1703554, Jun. 2018, doi: 10.1002/adma.201703554.

 

[49]
H. Zeng, O. M. Wani, P. Wasylczyk, and A. Priimagi, “Light-Driven, Caterpillar-Inspired Miniature Inching Robot,” Macromolecular Rapid Communications, vol. 39, p. 1700224, Jan. 2018, doi: 10.1002/marc.201700224.

 

[48]
O. M. Wani, H. Zeng, P. Wasylczyk, and A. Priimagi, “Programming Photoresponse in Liquid Crystal Polymer Actuators with Laser Projector,” Advanced Optical Materials, vol. 6, p. 1700949, Jan. 2018, doi: 10.1002/adom.201700949.

 

[47]
M. Virkki et al., “On the molecular optical nonlinearity of halogen-bond-forming azobenzenes,” Physical Chemistry Chemical Physics, vol. 20, pp. 28810–28817, Oct. 2018, doi: 10.1039/c8cp05392h.

 

[46]
J. Vapaavuori, C. G. Bazuin, and A. Priimagi, “Supramolecular design principles for efficient photoresponsive polymer-azobenzene complexes,” Journal of Materials Chemistry C, vol. 6, pp. 2168–2188, 2018, doi: 10.1039/c7tc05005d.

 

[45]
P. M. J. Szell et al., “Halogen-bond driven self-assembly of triangular macrocycles,” New Journal of Chemistry, vol. 42, pp. 10467–10471, Mar. 2018, doi: 10.1039/c8nj00759d.

 

[44]
J. K. Salunke et al., “Halogen-Bond-Assisted Photoluminescence Modulation in Carbazole-Based Emitter,” Scientific Reports, vol. 8, p. 14431, Dec. 2018, doi: 10.1038/s41598-018-32830-3.

 

[43]
M. Saccone, K. Kuntze, Z. Ahmed, A. Siiskonen, M. Giese, and A. Priimagi, “Ortho-Fluorination of azophenols increases the mesophase stability of photoresponsive hydrogen-bonded liquid crystals,” Journal of Materials Chemistry C, vol. 6, pp. 9958–9963, Aug. 2018, doi: 10.1039/c8tc02611d.

 

[42]
M. Poutanen, Z. Ahmed, L. Rautkari, O. Ikkala, and A. Priimagi, “Thermal Isomerization of Hydroxyazobenzenes as a Platform for Vapor Sensing,” ACS Macro Letters, vol. 7, pp. 381–386, Mar. 2018, doi: 10.1021/acsmacrolett.8b00093.

 

[41]
M. Lahikainen, H. Zeng, and A. Priimagi, “Reconfigurable photoactuator through synergistic use of photochemical and photothermal effects,” Nature Communications, vol. 9, p. 4148, Dec. 2018, doi: 10.1038/s41467-018-06647-7.

2017


[40]
H. Zeng, O. M. Wani, P. Wasylczyk, R. Kaczmarek, and A. Priimagi, “Self-Regulating Iris Based on Light-Actuated Liquid Crystal Elastomer,” Advanced Materials, vol. 29, p. 1701814, Aug. 2017, doi: 10.1002/adma.201701814.

 

[39]
O. M. Wani, H. Zeng, and A. Priimagi, “A light-driven artificial flytrap,” Nature Communications, vol. 8, p. 15546, Aug. 2017, doi: 10.1038/ncomms15546.

 

[38]
J. Wang, Y. Aihara, M. Kinoshita, J. Mamiya, A. Priimagi, and A. Shishido, “Orientational optical nonlinearities is polymer-stabilized dye-doped liquid crystals,” Journal of the Japanese Liquid Crystal Society, vol. 21, pp. 57–67, Jan. 2017.

 

[37]
P. Vivo, J. K. Salunke, and A. Priimagi, “Hole-Transporting Materials for Printable Perovskite Solar Cells,” Materials, vol. 10, p. 1087, Sep. 2017, doi: 10.3390/ma10091087.

 

[36]
J. Vapaavuori et al., “Supramolecular control of liquid crystals by doping with halogen-bonding dyes,” RSC Advances, vol. 7, pp. 40237–40242, Aug. 2017, doi: 10.1039/c7ra06397k.

 

[35]
J. E. Stumpel et al., “Surface-relief gratings in halogen-bonded polymer-azobenzene complexes: A concentration-dependence study,” Molecules, vol. 22, p. 1844, Oct. 2017, doi: 10.3390/molecules22111844.

 

[34]
A. Siiskonen and A. Priimagi, “Benchmarking DFT methods with small basis sets for the calculation of halogen-bond strengths,” Journal of Molecular Modeling, vol. 23, p. 50, Feb. 2017, doi: 10.1007/s00894-017-3212-4.

 

[33]
D. B. Shinde et al., “Crystallisation-enhanced bulk hole mobility in phenothiazine-based organic semiconductors,” Scientific Reports, vol. 7, p. 46268, May 2017, doi: 10.1038/srep46268.

 

[32]
M. Saccone et al., “Halogen bonding stabilizes a cis-azobenzene derivative in the solid state: A crystallographic study,” Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials, vol. 73, pp. 227–233, Apr. 2017, doi: 10.1107/S2052520617003444.

 

[31]
M. Saccone et al., “Photoresponsive ionic liquid crystals assembled: Via halogen bond: En route towards light-controllable ion transporters,” Faraday Discussions, vol. 203, pp. 407–422, Apr. 2017, doi: 10.1039/c7fd00120g.

 

[30]
J. Noga, A. Sobolewska, S. Bartkiewicz, M. Virkki, and A. Priimagi, “Periodic Surface Structures Induced by a Single Laser Beam Irradiation,” Macromolecular Materials and Engineering, vol. 302, p. 1600329, Feb. 2017, doi: 10.1002/mame.201600329.

 

[29]
R. Milani et al., “Hierarchical Self-Assembly of Halogen-Bonded Block Copolymer Complexes into Upright Cylindrical Domains,” Chem, vol. 2, pp. 417–426, Mar. 2017, doi: 10.1016/j.chempr.2017.02.003.

 

[28]
N. Karimi et al., “Molding Optical Waveguides with Nematicons,” Advanced Optical Materials, vol. 5, p. 1700199, Jul. 2017, doi: 10.1002/adom.201700199.

 

[27]
Z. Ahmed, A. Siiskonen, M. Virkki, and A. Priimagi, “Controlling azobenzene photoswitching through combined: Ortho -fluorination and -amination,” Chemical Communications, vol. 53, pp. 12520–12523, Oct. 2017, doi: 10.1039/c7cc07308a.

2016


[26]
M. Virkki, O. Tuominen, M. Kauranen, and A. Priimagi, “Photoinduced nonlinear optical response in azobenzene-functionalized molecular glass,” Optics Express, vol. 24, p. 4964, Mar. 2016, doi: 10.1364/oe.24.004964.

 

[25]
M. Poutanen, O. Ikkala, and A. Priimagi, “Structurally Controlled Dynamics in Azobenzene-Based Supramolecular Self-Assemblies in Solid State,” Macromolecules, vol. 49, pp. 4095–4101, Jun. 2016, doi: 10.1021/acs.macromol.6b00562.

 

[24]
Í. Neto et al., “Multicomponent Petasis-borono Mannich Preparation of Alkylaminophenols and Antimicrobial Activity Studies,” ChemMedChem, vol. 11, pp. 2015–2023, Sep. 2016, doi: 10.1002/cmdc.201600244.

 

[23]
N. Karimi, A. Alberucci, M. Virkki, A. Priimagi, M. Kauranen, and G. Assanto, “Quenching nematicon fluctuations via photo-stabilization,” Photonics Letters of Poland, vol. 8, pp. 2–4, Mar. 2016, doi: 10.4302/plp.2016.1.02.

 

[22]
P. Hiekkataipale et al., “Controlling the shape of Janus nanostructures through supramolecular modification of ABC terpolymer bulk morphologies,” Polymer, vol. 107, pp. 456–465, Dec. 2016, doi: 10.1016/j.polymer.2016.05.076.

 

[21]
F. Fernandez-Palacio et al., “Coordination networks incorporating halogen-bond donor sites and azobenzene groups,” CrystEngComm, vol. 18, pp. 2251–2257, Jan. 2016, doi: 10.1039/c6ce00059b.

 

[20]
F. Fernandez-Palacio et al., “Efficient light-induced phase transitions in halogen-bonded liquid crystals,” Chemistry of Materials, vol. 28, pp. 8314–8321, Nov. 2016, doi: 10.1021/acs.chemmater.6b03460.

 

[19]
G. Cavallo et al., “Superfluorinated ionic liquid crystals based on supramolecular, halogen-bonded anions,” Angewandte Chemie International Edition, vol. 55, pp. 6300–6304, May 2016, doi: 10.1002/anie.201601278.

 

[18]
G. Cavallo et al., “The halogen bond,” Chemical Reviews, vol. 116, pp. 2478–2601, Feb. 2016, doi: 10.1021/acs.chemrev.5b00484.

 

[17]
N. Akamatsu, M. Aizawa, R. Tatsumi, K. Hisano, A. Priimagi, and A. Shishido, “Photoresponsive liquid-crystalline polymer films bilayered with an inverse opal structure,” Journal of Photopolymer Science and Technology, vol. 29, pp. 145–148, Aug. 2016, doi: 10.2494/photopolymer.29.145.

2015


[16]
J. Wang, Y. Aihara, M. Kinoshita, J. I. Mamiya, A. Priimagi, and A. Shishido, “Laser-pointer-induced self-focusing effect in hybrid-aligned dye-doped liquid crystals,” Scientific Reports, vol. 5, p. 9890, Sep. 2015, doi: 10.1038/srep09890.

 

[15]
M. Virkki et al., “Halogen bonding enhances nonlinear optical response in poled supramolecular polymers,” Journal of Materials Chemistry C, vol. 3, pp. 3003–3006, Mar. 2015, doi: 10.1039/c5tc00484e.

 

[14]
J. Vapaavuori, R. H. A. Ras, M. Kaivola, C. G. Bazuin, and A. Priimagi, “From partial to complete optical erasure of azobenzene-polymer gratings: Effect of molecular weight,” Journal of Materials Chemistry C, vol. 3, pp. 11011–11016, 2015, doi: 10.1039/c5tc01776a.

 

[13]
J. Vapaavuori et al., “Photomechanical Energy Transfer to Photopassive Polymers through Hydrogen and Halogen Bonds,” Macromolecules, vol. 48, pp. 7535–7542, Oct. 2015, doi: 10.1021/acs.macromol.5b01813.

 

[12]
M. Saccone et al., “Supramolecular hierarchy among halogen and hydrogen bond donors in light-induced surface patterning,” Journal of Materials Chemistry C, vol. 3, pp. 759–768, Nov. 2015, doi: 10.1039/c4tc02315c.

 

[11]
M. Saccone, G. Cavallo, P. Metrangolo, G. Resnati, and A. Priimagi, “Halogen-bonded photoresponsive materials,” Topics in Current Chemistry, vol. 359, pp. 147–166, Mar. 2015, doi: 10.1007/128_2014_615.

2014


[10]
J. Vapaavuori, A. Goulet-Hanssens, I. T. S. Heikkinen, C. J. Barrett, and A. Priimagi, “Are Two Azo Groups Better than One? Investigating the Photoresponse of Polymer-Bisazobenzene Complexes,” Chemistry of Materials, vol. 26, pp. 5089–5096, Aug. 2014, doi: 10.1021/cm5023129.

 

[9]
A. Sobolewska, S. Bartkiewicz, and A. Priimagi, “High-Modulation-Depth Surface Relief Gratings Using s–s Polarization Configuration in Supramolecular Polymer–Azobenzene Complexes,” The Journal of Physical Chemistry C, vol. 118, pp. 23279–23284, Sep. 2014, doi: 10.1021/jp507486x.

 

[8]
M. Saccone et al., “Azobenzene-based difunctional halogen-bond donor: towards the engineering of photoresponsive co-crystals,” Acta Crystallographica Section B Structural Science, Crystal Engineering and Materials, vol. 70, pp. 149–156, Mar. 2014, doi: 10.1107/S205252061302622X.

 

[7]
A. Priimagi and A. Shevchenko, “Azopolymer-based micro- and nanopatterning for photonic applications,” Journal of Polymer Science Part B: Polymer Physics, vol. 52, pp. 163–182, Feb. 2014, doi: 10.1002/polb.23390.

 

[6]
A. Priimagi, C. J. Barrett, and A. Shishido, “Recent twists in photoactuation and photoalignment control,” Journal of Materials Chemistry C, vol. 2, pp. 7155–7162, Jun. 2014, doi: 10.1039/C4TC01236D.

 

[5]
R. J. Moerland et al., “Large-area arrays of three-dimensional plasmonic subwavelength-sized structures from azopolymer surface-relief gratings,” Materials Horizons, vol. 1, pp. 74–80, Jan. 2014, doi: 10.1039/c3mh00008g.

 

[4]
J. E. Koskela, J. Vapaavuori, R. H. A. Ras, and A. Priimagi, “Light-driven surface patterning of supramolecular polymers with extremely low concentration of photoactive molecules,” ACS Macro Letters, vol. 3, pp. 1196–1200, Nov. 2014, doi: 10.1021/mz500616q.

 

[3]
J. E. Koskela et al., “Light-Fuelled Transport of Large Dendrimers and Proteins,” Journal of the American Chemical Society, vol. 136, pp. 6850–6853, May 2014, doi: 10.1021/ja502623m.

 

[2]
A. Goulet-Hanssens, T. C. Corkery, A. Priimagi, and C. J. Barrett, “Effect of head group size on the photoswitching applications of azobenzene Disperse Red 1 analogues,” Journal of Materials Chemistry C, vol. 2, pp. 7505–7512, Aug. 2014, doi: 10.1039/C4TC00996G.

 

[1]
N. Akamatsu et al., “Facile strain analysis of largely bending films by a surface-labelled grating method,” Scientific Reports, vol. 4, p. 5377, Jun. 2014, doi: 10.1038/srep05377.